Processing math: 100%
Iterative, Deep Synthetic Aperture Sonar Image Segmentation | IEEE Journals & Magazine | IEEE Xplore

Iterative, Deep Synthetic Aperture Sonar Image Segmentation

Publisher: IEEE

Abstract:

Synthetic aperture sonar (SAS) systems produce high-resolution images of the seabed environment. Moreover, deep learning has demonstrated superior ability in finding robu...View more

Abstract:

Synthetic aperture sonar (SAS) systems produce high-resolution images of the seabed environment. Moreover, deep learning has demonstrated superior ability in finding robust features for automating imagery analysis. However, the success of deep learning is conditioned on having lots of labeled training data but obtaining generous pixel-level annotations of SAS imagery is often practically infeasible. This challenge has thus far limited the adoption of deep learning methods for SAS segmentation. Algorithms exist to segment SAS imagery in an unsupervised manner, but they lack the benefit of state-of-the-art learning methods and the results present significant room for improvement. In view of the above, we propose a new iterative algorithm for unsupervised SAS image segmentation combining superpixel formation, deep learning, and traditional clustering methods. We call our method iterative deep unsupervised segmentation (IDUS). IDUS is an unsupervised learning framework that can be divided into four main steps: 1) a deep network estimates class assignments; 2) low-level image features from the deep network are clustered into superpixels; 3) superpixels are clustered into class assignments (which we call pseudo-labels) using k -means; and 4) resulting pseudo-labels are used for loss backpropagation of the deep network prediction. These four steps are performed iteratively until convergence. A comparison of IDUS to current state-of-the-art methods on a realistic benchmark dataset for SAS image segmentation demonstrates the benefits of our proposal even as the IDUS incurs a much lower computational burden during inference (actual labeling of a test image). Because our design combines merits of classical superpixel methods with deep learning, practically we demonstrate a very significant benefit in terms of reduced selection bias, i.e., IDUS shows markedly improved robustness against the choice of training images. Finally, we also develop a semi-supervised (SS) extensio...
Article Sequence Number: 4206615
Date of Publication: 30 March 2022

ISSN Information:

Publisher: IEEE

Funding Agency:


References

References is not available for this document.