Sheet resistivity as a function of Ar⁺ dose for samples implanted with Ar⁺ at 70 keV and B⁺ at 1.0x10¹⁵ cm⁻², 20 keV, and RT, then heated at 300°C for 90 min (solid circl...
Abstract:
The two-step implantation of argon precursor ion (Ar+) followed by boron ion (B+) in single crystalline silicon at room temperature is discussed to activate boron implant...Show MoreMetadata
Abstract:
The two-step implantation of argon precursor ion (Ar+) followed by boron ion (B+) in single crystalline silicon at room temperature is discussed to activate boron implanted region by post heating at 300 followed by 400°C. The implantation of Ar+ at a dose of 6.0 × 1013 cm-2 at 70 keV with a projected range Rp(Ar) of 80 nm followed by B+ at 1.0 × 1015 cm-2 and 15 keV with Rp(B) of 62 nm caused crystalline disordered states with the effective disordered amorphous depth Aeff of 32 nm, while the post heating of 300°C for 90 min followed by 400°C for 30 min markedly decreased Aeff to 1.8 nm. The effective recrystallization by the post heating promoted activation of doped region associated with decrease in the sheet resistivity to 189 Ω/sq by the post heating. The activation ratio was estimated as 0.33 under the assumption of a hole mobility of 50 cm2/Vs in the boron implanted region.
Sheet resistivity as a function of Ar⁺ dose for samples implanted with Ar⁺ at 70 keV and B⁺ at 1.0x10¹⁵ cm⁻², 20 keV, and RT, then heated at 300°C for 90 min (solid circl...
Published in: IEEE Access ( Volume: 8)
Funding Agency:
References is not available for this document.
Select All
1.
S. Uchikoga and N. Ibaraki, “Low temperature poly-Si TFT-LCD by excimer laser anneal,” Thin Solid Films, vol. 383, nos.–2, pp. 19–24, Feb. 2001, doi: 10.1016/S0040-6090(00)01644-8.
2.
S. Inoue, K. Sadao, T. Ozawa, Y. Kobashi, H. Kwai, T. Kitagawa, and T. Shimoda, “Low temperature poly-Si TFT-electrophoretic displays (TFT-EPDs) with four level gray scale,” in IEDM Tech. Dig., Dec. 2000, pp. 197–200, Dec. 2000, doi: 10.1109/IEDM.2000.904291.
3.
T. Sameshima, S. Usui, and M. Sekiya, “XeCl excimer laser annealing used in the fabrication of poly-Si TFT’s,” IEEE Electron Device Lett., vol. 7, no. 5, pp. 276–278, May 1986, doi: 10.1109/EDL.1986.26372.
4.
M. A. Green, “Commercial progress and challenges for photovoltaics,” Nature Energy, vol. 1, no. 1, Jan. 2016, Art. no. 15015.
5.
M. Dahlinger, B. Bazer-Bachi, T. C. Röder, J. R. Köhler, R. Zapf-Gottwick, and J. H. Werner, “22.0% efficient laser doped back contact solar cells,” Energy Procedia, vol. 38, pp. 250–253, Sep. 2013.
6.
M. Mehrotra, J. C. Hu, and M. Rodder, “A 1.2 V, sub-0.09 \mu\text{m} gate length CMOS technology,” in IEDM Tech. Dig., Dec. 1999, pp. 419–422, doi: 10.1109/IEDM.1999.824183.
7.
T. Ito, K. Suguro, M. Tamura, T. Taniguchi, Y. Ushiku, T. Iinuma, T. Itani, M. Yoshioka, T. Owada, Y. Imaoka, H. Murayama, and T. Kusuda, “Flash lamp annealing technology for ultra-shallow junction formation,” in Proc. Extended Abstr. 3rd Int. Workshop Junction Technol. (IWJT), Dec. 2002, pp. 23–26, doi: 10.1109/IWJT.2002.1225191.
8.
A. Shima and A. Hiraiwa, “Ultra-shallow junction formation by non-melt laser spike annealing and its application to complementary metal oxide semiconductor devices in 65-nm node,” Jpn. J. Appl. Phys., vol. 45, no. 7, pp. 5708–5715, Jul. 2006, doi: 10.1143/JJAP.45.5708.
9.
K. Goto, T. Yamamoto, T. Kubo, M. Kase, Y. Wang, T. Lin, S. Talwar, and T. Sugii, “Ultra-low contact resistance for deca-nm MOSFETs by laser annealing,” in IEDM Tech. Dig., Dec. 1999, pp. 931–933, doi: 10.1109/IEDM.1999.824302.
10.
H. Onoda, Y. Nakashima, T. Nagayama, and S. Sakai, “High dose dopant implantation to heated Si substrate without amorphous layer formation,” in Proc. 13th Int. Workshop Junction Technol. (IWJT), Jun. 2013, pp. 66–69.
11.
T. Nagao, T. Uehara, K. Yasuta, Y. Inouchi, J. Tatemichi, M. Hasumi, and T. Sameshima, “Two-step ion implantation used for activating boron atoms in silicon at 300 °C,” in Proc. 25th Int. Workshop Active Matrix Flatpanel Display Devices, Sep. 2018, pp. 1–4.
12.
J. F. Ziegler and J. M. Manoyan, “The stopping of ions in compounds,” Nucl. Instrum. Methods, vol. B35, pp. 215–228, Dec. 1988.
13.
M. Born and E. Wolf, Principles of Optics. New York, NY, USA : Pergamon, 1974, ch. 1, p. 13.
14.
K. Ukawa, Y. Kanda, T. Sameshima, N. Sano, M. Naito, and N. Hamamoto, “Activation of silicon implanted with phosphorus and boron atoms by infrared semiconductor laser rapid annealing,” Jpn. J. Appl. Phys., vol. 49, no. 7, Jul. 2010, Art. no. 076503.
15.
T. Sameshima, H. Hayasaka, and T. Haba, “Analysis of microwave absorption caused by free carriers in silicon,” Jpn. J. Appl. Phys., vol. 48, no. 2, Feb. 2009, Art. no. 021204.
16.
T. Sameshima, T. Motoki, K. Yasuda, T. Nakamura, M. Hasumi, and T. Mizuno, “Photoinduced carrier annihilation in silicon pn junction,” Jpn. J. Appl. Phys., vol. 54, no. 8, Aug. 2015, Art. no. 081302.
17.
H. Engstrom, “Infrared reflectivity and transmissivity of boron-implanted, laser-annealed silicon,” J. Appl. Phys., vol. 51, no. 10, pp. 5245–5249, 1980, doi: 10.1063/1.327476.
18.
T. Sameshima, K. Yasuta, M. Hasumi, T. Nagao, and Y. Inouchi, “Activation of dopant in silicon by ion implantation under heating sample at 200 °C,” Appl. Phys. A, Solids Surf., vol. 124, no. 3, p. 228, Mar. 2018.
19.
Y. Taur and T, Ning, Fundamental of Modern VLSI Physics. Cambridge, U.K. : Cambridge Univ. Press, 1998, ch. 2. p. 20.
20.
D. J. Fitzgerald, “Radiation-induced increase in surface recombination velocity of thermally oxidized silicon structures,” Proc. IEEE, vol. 54, no. 11, pp. 1601–1602, Dec. 1966, doi: 10.1109/PROC.1966.5217.
21.
A. K. W. Chee, “Principles of site-selective doping contrast in the dual-beam focused ion beam/scanning electron microscope,” Ultramicroscopy, Jan. 2020, Art. no. 112947, doi: 10.1016/j.ultramic.2020.112947.