Loading [MathJax]/extensions/MathMenu.js
Benefits and Challenges of Designing Cryogenic CMOS RF Circuits for Quantum Computers | IEEE Conference Publication | IEEE Xplore

Benefits and Challenges of Designing Cryogenic CMOS RF Circuits for Quantum Computers


Abstract:

Accurate and low-noise generation and amplification of microwave signals are required for the manipulation and readout of quantum bits (qubits). A fault-tolerant quantum ...Show More

Abstract:

Accurate and low-noise generation and amplification of microwave signals are required for the manipulation and readout of quantum bits (qubits). A fault-tolerant quantum computer operates at deep cryogenic temperatures (i.e., <; 100mK) and requires thousands of qubits for running practical quantum algorithms. Consequently, CMOS radio-frequency (RF) integrated circuits operating at cryogenic temperatures down to 4 K (Cryo-CMOS) offer a higher level of system integration and scalability for future quantum computers. In this paper, we extensively discuss the role, benefits, and constraints of Cryo-CMOS for qubits control and readout. The main characteristics of the CMOS transistors and their impacts on RF circuit designs are described. Furthermore, opportunities and challenges of low noise RF signal generation and amplification are investigated.
Date of Conference: 26-29 May 2019
Date Added to IEEE Xplore: 01 May 2019
Print ISBN:978-1-7281-0397-6
Print ISSN: 2158-1525
Conference Location: Sapporo, Japan
References is not available for this document.

I. Introduction

Quantum computing promises to solve specific computational problems exponentially faster than any imaginable digital computer. These problems include DNA analysis, effi-cient search in gigantic data sets concerning medical research, consumer behavior and financial markets [1], and optimization of materials and industrial chemical processes [2]. Quantum mechanics permits a particle to exist in a superposition state and be entangled to physically separated systems. These phenomena are exploited by quantum machines to simultaneously produce rich configuration states and highly correlated behav-ior to tackle classically intractable computational problems.

Select All
1.
L. K. Grover, "A fast quantum mechanical algorithm for database search", Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pp. 212-219, 1996.
2.
R. P. Feynman, "Simulating physics with computers", Int. J. Theor. Phys., vol. 21, pp. 467-488, 1982.
3.
E. Kawakami, P. Scarlino, D. R. Ward, F. R. Braakman, D. E. Savage, M. G. Lagally, et al., "Electrical control of a long-lived spin qubit in a si/sige quantum dot", Nature Nanotechnology, vol. 9, pp. 666EP-08, 2014.
4.
L. DiCarlo, J. M. Chow, J. M. Gambetta, L. S. Bishop, B. R. Johnson, D. I. Schuster, et al., "Demonstration of two-qubit algorithms with a superconducting quantum processor", Nature, vol. 460, pp. 240 EP-06, 2009.
5.
A. G. Fowler, M. Mariantoni, J. M. Martinis and A. N. Cleland, "Surface codes: Towards practical large-scale quantum computation", Phys. Rev. A, vol. 86, pp. 032324, Sep 2012.
6.
"IBM builds its most powerful universal quantum computing processors", 2017, [online] Available: http://www-03.ibm.com/press/us/en/pressrelease/52403.wss.
7.
J. Kelly et al., "State preservation by repetitive error detection in a superconducting quantum circuit", Nature, vol. 519, pp. 66 EP-03, 2015.
8.
D. Wecker, B. Bauer, B. K. Clark, M. B. Hastings and M. Troyer, "Gate-count estimates for performing quantum chemistry on small quantum computers", Phys. Rev. A, vol. 90, pp. 022305, Aug 2014.
9.
E. Charbon et al., "Cryo-CMOS circuits and systems for scalable quantum computing", IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 212-219, 2017.
10.
B. Patra et al., "Cryo-CMOS circuits and systems for quantum computing applications", IEEE Journal of Solid-State Circuits, vol. 53, no. 1, pp. 309-321, Jan 2018.
11.
F. Sebastiano et al., "Cryo-CMOS electronic control for scalable quantum computing", 54th ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1-6, 2017.
12.
C. C. Bultink, B. Tarasinski, N. Haandbæk, S. Poletto, N. Haider, D. Michalak, et al., "General method for extracting the quantum efficiency of dispersive qubit readout in circuit QED", Applied Physics Letters, vol. 112, no. 9, pp. 092601, 2018.
13.
T. Walter, P. Kurpiers, S. Gasparinetti, P. Magnard, A. Potočnik, Y. Salathé, M. Pechal, M. Mondal, M. Oppliger et al., "Rapid high-fidelity single-shot dispersive readout of superconducting qubits", Physical Review Applied, vol. 7, no. 5, pp. 054020, 2017.
14.
R. M. Incandela, L. Song, H. Homulle, E. Charbon, A. Vladimirescu and F. Sebastiano, "Characterization and compact modeling of nanometer CMOS transistors at deep-cryogenic temperatures", IEEE Journal of the Electron Devices Society, Apr 2018.
15.
F. Balestra and G. Ghibaudo, "Brief review of the MOS device physics for low temperature electronics", Solid-State Electronics, vol. 37, no. 12, pp. 1967-1975, 1994.
16.
P. A. ’t Hart, J. P. G. van Dijk, M. Babaie, E. Charbon, A. Vladimircscu and F. Sebastiano, "Characterization and model validation of mismatch in nanometer cmos at cryogenic temperatures", 2018 48th European Solid-State Device Research Conference (ESSDERC), pp. 246-249, Sept 2018.
17.
A. Beckers, F. Jazaeri and C. Enz, "Characterization and modeling of 28 nm bulk CMOS technology down to 4.2 k", IEEE Journal of the Electron Devices Society, 2018.
18.
C. A. Ryan, B. R. Johnson, D. Ristè, B. Donovan and T. A. Ohki, "Hardware for dynamic quantum computing", Review of Scientific Instruments, vol. 88, no. 10, pp. 104703, 2017.
19.
C. K. Andersen, J. Heinsoo, A. Remm, S. Krinner, Y. Salathe, T. Walter, S. Gasparinetti, J.-C. Besse, A. Potocnik, C. Eichler et al., "Rapid high-fidelity multiplexed readout of superconducting qubits", Bulletin of the American Physical Society, 2018.
20.
Y. Salathé, P. Kurpiers, T. Karg, C. Lang, C. K. Andersen, A. Akin, et al., "Low-latency digital signal processing for feedback and feedforward in quantum computing and communication", Physical Review Applied, vol. 9, no. 3, pp. 034011, 2018.
21.
C. C. Bultink, M. Rol, T. OBrien, X. Fu, B. Dikken, C. Dickel, R. Vermeulen, J. de Sterke, A. Bruno, R. Schouten et al., "Active resonator reset in the nonlinear dispersive regime of circuit QED", Physical Review Applied, vol. 6, no. 3, pp. 034008, 2016.
22.
C. Macklin, K. OBrien, D. Hover, M. Schwartz, V. Bolkhovsky, X. Zhang, et al., "A near–quantum-limited josephson traveling-wave parametric amplifier", Science, vol. 350, no. 6258, pp. 307-310, 2015.
23.
T. Roy, S. Kundu, M. Chand, A. Vadiraj, A. Ranadive, N. Nehra, et al., "Broadband parametric amplification with impedance engineering: Beyond the gain-bandwidth product", Applied Physics Letters, vol. 107, no. 26, pp. 262601, 2015.
24.
LNF–LNC4 8C: 4-8 GHz Cryogenic Low Noise Amplifier, Low Noise Factory, 2018.
25.
A. Coskun and J. Bardin, "Cryogenic small-signal and noise performance of 32nm SOI CMOS", Microwave Symposium (IMS) 2014 IEEE MTT-S International., pp. 1-4, 2014.
26.
J. Wang, X.-M. Peng, Z.-J. Liu, L. Wang, Z. Luo and D.-D. Wang, "Observation of nonconservation characteristics of radio frequency noise mechanism of 40-nm n-MOSFET", Chinese Physics B, vol. 27, no. 2, pp. 027201, 2018.
27.
X. Chen, C.-H. Chen and R. Lee, "Fast evaluation of the high-frequency channel noise in nanoscale MOSFETs", IEEE Transactions on Electron Devices, vol. 65, no. 4, pp. 1502-1509, 2018.
28.
R. E. Collin, Foundations for microwave engineering., John Wiley & Sons, 2007.
29.
S. Ranganathan and Y. Tsividis, " A MOS capacitor-based discrete-time parametric amplifier with 1.2 V output swing and 3 µ W power dissipation ", Solid-State Circuits Conference 2003. Digest of Technical Papers. ISSCC. 2003 IEEE International., pp. 406-502, 2003.
30.
A. Yoshizawa and S. Iida, "A gain-boosted discrete-time charge-domain FIR LPF with double-complementary MOS parametric amplifiers", Solid-State Circuits Conference 2008. ISSCC 2008. Digest of Technical Papers. IEEE International., pp. 68-596, 2008.
Contact IEEE to Subscribe

References

References is not available for this document.