Abstract:
The sudden outbreak of COVID-19 brings many unpredictable situations to human travel, such as temporarily closed highways, parking lots, etc. The scenarios mentioned abov...Show MoreMetadata
Abstract:
The sudden outbreak of COVID-19 brings many unpredictable situations to human travel, such as temporarily closed highways, parking lots, etc. The scenarios mentioned above will lead to a large backlog of vehicles, and the requirements of Internet of vehicle (IoV) applications increase sharply in a period of short time correspondingly. Mobile edge computing (MEC) is a key enabling technology that can guarantee the diverse requirements of IoV applications through the optimization of resource scheduling. However, the sharp increasing in requirements of IoV applications caused by the congestion of highways or parking lots still bring great challenges to the deployment of traditional MEC. Therefore, in this paper, we construct an unmanned aerial vehicle (UAV) enabled MEC system, in which the data generated from IoV applications is processed by offloading to UAVs with MEC servers to ensure the efficiency of data processing and the response time of IoV applications. In order to approximate real-world UAV enabled MEC system, we consider the stochastic offloading and downloading processing time. Moreover, the priority constraints of sensors from the same vehicle are taken into consideration since they have different importance degrees. Then, we propose an Markov network-based cooperative evolutionary algorithm (MNCEA) to search out the optimal UAV scheduling solution to guarantee the shortest response time, in which the solution space is divided into multiple sub-solution spaces with the help of MN structure and parameters. Finally, we construct multiple simulation experiments with different probability distributions to simulate uncertainty factors. The simulation results verify the validity of MNCEA compared with the state-of-the-art methods, which is reflected by the shortest response time of requirements of IoV applications.
Published in: IEEE Transactions on Intelligent Transportation Systems ( Volume: 24, Issue: 12, December 2023)