Improved Detection of Broken Rotor Bars by 1-D Self-ONNs | IEEE Conference Publication | IEEE Xplore

Improved Detection of Broken Rotor Bars by 1-D Self-ONNs


Abstract:

Recently, machine learning techniques have been increasingly applied to the detection of both mechanical and electrical faults in induction motors. Broken rotor bars are ...Show More

Abstract:

Recently, machine learning techniques have been increasingly applied to the detection of both mechanical and electrical faults in induction motors. Broken rotor bars are one of the most common fault types that seriously affect the efficiency and lifetime of induction motors. In this study, compact 1-D self-organized operational neural networks (Self-ONNs) are applied to improve the detection and classification of broken rotor bars in induction motors. 1-D convolutional neural networks (CNNs) are a special case of Self-ONNs and they are usually preferred to traditional fault diagnosis systems with separately designed feature extraction and classification blocks as they provide cost-effective and practical hardware implementation. The proposed system improves the detection and classification performance of 1-D CNNs while still providing similar advantages and preserving real-time computational ability.
Date of Conference: 17-20 October 2022
Date Added to IEEE Xplore: 09 December 2022
ISBN Information:

ISSN Information:

Conference Location: Brussels, Belgium

Contact IEEE to Subscribe

References

References is not available for this document.