Loading [MathJax]/extensions/MathMenu.js
Applications of a Braess Paradox Traffic Management Software | IEEE Conference Publication | IEEE Xplore

Applications of a Braess Paradox Traffic Management Software


Abstract:

The Traffic Management Software System developed in this study is a vast improvement upon existing systems, as it makes use of Braess' paradox to individualize and optimi...Show More

Abstract:

The Traffic Management Software System developed in this study is a vast improvement upon existing systems, as it makes use of Braess' paradox to individualize and optimize the routes drivers take to their destination. Braess' paradox states that, as drivers tend to make selfish decisions regarding their path, drivers will all elect to take any faster, more efficient path opened - thus increasing travel time on that path, and our traffic management software system makes use of this paradox by individualizing routes for drivers so that they do not all take the same shortcut or, in the event of construction or an accident, the same detour, thereby clogging it. This is an improvement on existing traffic management systems because existing traffic management systems will direct all drivers to the same route, which increases the volume of traffic on these routes and the amount of time it takes to travel on them. If there is construction or a car accident on a given road, all cars will be directed to the same detour route, which will create a high volume of traffic on that road. If a new, shorter road is opened, drivers will all be directed to use it, and the road will become clogged. These roads are always suggested to drivers no matter what the traffic volume is. However, our traffic management software disincentivizes, or renders temporarily unusable, high - traffic roads due to the high amount of congestion. However, this problem is solved with the customization of routes for individual drivers, and the opening and closing of certain routes to drivers based on their traffic volume. Routes are output by the software system by using the demand and capacity of these routes, and the travel time on them, to generate 'Braess routes', which are routes deemed efficient by the software and a function of route demand and travel time. When a Braess route becomes congested, it is disincentivized, thus eventually eliminating the high traffic. This is achieved using the Frank Wolfe...
Date of Conference: 19-21 June 2022
Date Added to IEEE Xplore: 07 December 2022
ISBN Information:
Conference Location: Hangzhou, China

Contact IEEE to Subscribe

References

References is not available for this document.