Abstract:
This paper addresses the problem of characterizing statistical distributions of cellular shape populations using shape samples from microscopy image data. This problem is...Show MoreMetadata
Abstract:
This paper addresses the problem of characterizing statistical distributions of cellular shape populations using shape samples from microscopy image data. This problem is challenging because of the nonlinearity and high-dimensionality of shape manifolds. The paper develops an efficient, nonparametric approach using ideas from k-modal mixtures and kernel estimators. It uses elastic shape analysis of cell boundaries to estimate statistical modes and clusters given shapes around those modes. (Notably, it uses a combination of modal distributions and ANOVA to determine k automatically.) A population is then characterized as k-modal mixture relative to this estimated clustering and a chosen kernel (e.g., a Gaussian or a flat kernel). One can compare and analyze populations using the Fisher-Rao metric between their estimated distributions. We demonstrate this approach for classifying shapes associated with migrations of entamoeba histolytica under different experimental conditions. This framework remarkably captures salient shape patterns and separates shape data for different experimental settings, even when it is difficult to discern class differences visually.
Date of Conference: 21-25 August 2022
Date Added to IEEE Xplore: 29 November 2022
ISBN Information: