Loading web-font TeX/Math/Italic
On the DoF of X-Networks With Synergistic Alternating CSIT: A Step Towards Integrated Communication and Sensing | IEEE Journals & Magazine | IEEE Xplore

On the DoF of X-Networks With Synergistic Alternating CSIT: A Step Towards Integrated Communication and Sensing


Abstract:

The coexistence of communication and sensing services in the next wireless communication systems, i.e., beyond 5G and 6G systems, revive the central role of interference ...Show More

Abstract:

The coexistence of communication and sensing services in the next wireless communication systems, i.e., beyond 5G and 6G systems, revive the central role of interference management techniques such as interference alignment, coordinated multipoint transmission, and cell-free massive multiple-input–multiple-output (MIMO), in defeating interference and achieving the network capacity. In this article, we consider the K -user single-input–single-output (SISO) X-channel and its variants ( 2 \times K and K \times 2 ) in fast-fading environments. This can theoretically model many practical use cases for beyond 5G and 6G networks. For instance, it can model the case of having K cars communicating with another K cars, while former cars are sensing environment using the latter ones (in a cooperative, bistatic, and active approach) over the same time and frequency resources. We assume that the transmitters have access to synergistic alternating channel state information at the transmitter (CSIT) where it alternates between three states: perfect (P), delayed (D), and no-CSIT (N), and these states are associated with fractions of time denoted by \lambda _{P} , \lambda _{D} , and \lambda _{N} , respectively. We develop novel degree-of-freedom (DoF) achievability schemes that exploit the synergy of the instantaneous CSIT and the delayed CSIT to retrospectively align interference in the subsequent channel uses. In particular, we show that the sum DoF of the K -user SISO X-channel is at least {2K}/{K + 1} , using a two-phase transmission scheme over finite symbols channel extension and under a certain distribution of the CSIT availability of \Lambda (\lambda _{P}=({1}/{3}), \lambda _{D}= ({1}/{3}), \lambda _{N}=({1}/{3})) . This achievability result can be considered as a tight lower bound where it coincides with the best lower bound known for the same network but with partial output feedback instead of alternating CSIT. In addition, it shows that t...
Page(s): 199 - 214
Date of Publication: 07 November 2022
Electronic ISSN: 2694-1783

Funding Agency:


References

References is not available for this document.