Visual Error Constraint Free Visual Servoing Using Novel Switched Part Jacobian Control | IEEE Journals & Magazine | IEEE Xplore

Visual Error Constraint Free Visual Servoing Using Novel Switched Part Jacobian Control


0 seconds of 0 secondsVolume 90%
Press shift question mark to access a list of keyboard shortcuts
Keyboard Shortcuts
Play/PauseSPACE
Increase Volume
Decrease Volume
Seek Forward
Seek Backward
Captions On/Offc
Fullscreen/Exit Fullscreenf
Mute/Unmutem
Seek %0-9
00:00
00:00
00:00
 
This is a video presentation about the design and development of the proposed switched part jacobian adaptive gain control scheme for handling very large orientation erro...

Abstract:

This research advances the state of the image-based visual servoing (IBVS) of robotic arms to handle very large visual errors without the camera advance/retreat problem. ...Show More

Abstract:

This research advances the state of the image-based visual servoing (IBVS) of robotic arms to handle very large visual errors without the camera advance/retreat problem. Conventional visual servoing schemes either consist of a partitioned or a switched system that relies on the feature Jacobian to find a unique feature for partitioning control along the specific DoF. We suggest a new IBVS scheme based on part-manipulator Jacobian approach for building a hybrid switched-partitioned task jacobian without the need to define new features. Utilizing this computationally efficient, directly defined Part-manipulator Jacobian an efficient second order minimization(ESM) based adaptive switching controller was constructed. The proposed scheme was tested in the eye-in-hand configuration on a 6-DoF simulated robotic arm and a 7-DoF real robotic arm for a set of large visual errors between the initial and the desired frames, including a rotational error of 180° around the camera optical axis. Compared to other IBVS schemes under various simulation conditions, the performance of the proposed scheme remained superior to that of the Jacobian-pseudo-inverse and other ESM-based IBVS schemes. The experimental results showed a notable expansion of the convergence zone up to 180° rotational errors with a 40% improvement in the convergence rates with a significant 90% reduction in the joint velocities and joint energies required to complete the task. The proposed controller possesses no camera advance/retreat motion, has a task Jacobian matrix that is well-conditioned, and it is computationally efficient. Moreover, the method is independent of the robot’s DoF and is extendable to other visual servoing schemes.
0 seconds of 0 secondsVolume 90%
Press shift question mark to access a list of keyboard shortcuts
Keyboard Shortcuts
Play/PauseSPACE
Increase Volume
Decrease Volume
Seek Forward
Seek Backward
Captions On/Offc
Fullscreen/Exit Fullscreenf
Mute/Unmutem
Seek %0-9
00:00
00:00
00:00
 
This is a video presentation about the design and development of the proposed switched part jacobian adaptive gain control scheme for handling very large orientation erro...
Published in: IEEE Access ( Volume: 10)
Page(s): 103669 - 103693
Date of Publication: 01 September 2022
Electronic ISSN: 2169-3536

Funding Agency:


References

References is not available for this document.