Abstract:
In recent years, markerless motion capture using a depth camera or RGB camera without any restriction on the subject has been attracting attention. Especially, depth came...Show MoreMetadata
Abstract:
In recent years, markerless motion capture using a depth camera or RGB camera without any restriction on the subject has been attracting attention. Especially, depth cameras such as Kinect and RealSense allow instantaneous motion capture even at home outside lab environment, which is attractive for rehabilitation usage. However, single depth camera can capture steadily skeleton only when the subject stands facing to camera for the limited range, thus it is hard to apply to track skeletons while walking. Multiple depth cameras setting may allow to expand the range, but it can involve non-practical calibration process and can affect instantaneous capture advantage of depth camera. In this study, we propose a systematic method to integrate the motion information of skeletal models obtained from multiple depth cameras. The proposed method can perform a quick calibration using skeletal models instead of external reference objects, and estimate the spatial relationship of the sensors that allows the depth camera to move. The result demonstrates stable skeleton tracking free from occlusion problem keeping instantaneous capture capability of depth cameras.
Published in: 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
Date of Conference: 11-15 July 2022
Date Added to IEEE Xplore: 08 September 2022
ISBN Information:
ISSN Information:
PubMed ID: 36086142