Loading web-font TeX/Caligraphic/Regular
Certainty Equivalent Quadratic Control for Markov Jump Systems | IEEE Conference Publication | IEEE Xplore

Certainty Equivalent Quadratic Control for Markov Jump Systems


Abstract:

Real-world control applications often involve complex dynamics subject to abrupt changes or variations. Markov jump linear systems (MJS) provide a rich framework for mode...Show More

Abstract:

Real-world control applications often involve complex dynamics subject to abrupt changes or variations. Markov jump linear systems (MJS) provide a rich framework for modeling such dynamics. Despite an extensive history, theoretical understanding of parameter sensitivities of MJS control is somewhat lacking. Motivated by this, we investigate robustness aspects of certainty equivalent model-based optimal control for MJS with a quadratic cost function. Given the uncertainty in the system matrices and in the Markov transition matrix is bounded by ϵ and η respectively, robustness results are established for (i) the solution to coupled Riccati equations and (ii) the optimal cost, by providing explicit perturbation bounds that decay as \mathcal{O}\left( {\varepsilon + \eta } \right) and \mathcal{O}\left( {{{\left( {\varepsilon + \eta } \right)}^2}} \right) respectively.
Date of Conference: 08-10 June 2022
Date Added to IEEE Xplore: 05 September 2022
ISBN Information:

ISSN Information:

Conference Location: Atlanta, GA, USA

Contact IEEE to Subscribe

References

References is not available for this document.