Introduction
MCDM has deliberated as the most proper scheme for verdict the adequate alternative since all probable choices, subsequent standards, or features. Most rulings are taken when the intentions and confines are generally unspecified or unclear in real-life surroundings. Zadeh presented the notion of the fuzzy set [1] to overcome such vague and indeterminate facts. It is a fundamental tool to handle the insignificances and hesitations in decision-making. The existing FS cannot deal with the scenarios when the experts consider a membership degree (MD) in intervals during the decision-making procedure. The prevailing fuzzy set cannot deliver information about any alternative’s non-membership degree (NMD). Atanassov [2] overcame the abovementioned limitations and developed the intuitionistic fuzzy set (IFS). Wang and Liu [3] introduced several operations such as Einstein product, Einstein sum, etc., and AOs for IFS. Garg and Kaur [4] protracted the idea of IFS and settled the cubic intuitionistic fuzzy set (CIFS). Still, the prevailing IFS cannot grip the incompatible and ambiguous information because it envisions the linear inequality among the MD and NMD. If the group of professionals elects the MD and NMD so that their sum exceeds 1, such as MD = 0.6 and NMD = 0.7, respectively, then the IFS, as declared formerly, cannot deal with it because
Zhang and Xu [7] settled some basic operational laws for PFS and protracted the order of preference by similarity to the ideal solution (TOPSIS) to determine MCDM problems. Wei and Lu [8] presented the Pythagorean fuzzy power AOs and reflected their necessary structures. Using their proposed operators, they also established a DM technique to resolve multi-attribute decision-making (MADM). Wang and Li [9] demonstrated the interaction operational laws for Pythagorean fuzzy numbers (PFNs) and settled power Bonferroni mean operators. Zhang [10] projected a unique DM methodology built on similarity measures to determine MCGDM complications under the PFS setting. Yager [11] estimated a generalization of IFS and PFS as q-ROFS, enlarging the modeler’s impartiality to prompt their thoughts about MG and NMG values. For example, if MG = 0.7 and MG = 0.8, then available IFS and PFS fail to cope with this scenario. But, Yager’s q-ROFS capably deal with such situations by modifying the condition
The above techniques have broad applications, but these theories have some limitations on parametric chemistry due to their ineffectiveness. Molodtsov [26] introduced the soft sets (SS) theory and defined some basic operations with their features to handle misperception and haziness. Maji et al. [27] settled the fuzzy soft set with some desirable properties by including two general concepts, fuzzy set, and SS. Maji et al. [28] protracted the IFSS and some essential operations with their fundamental properties. Arora and Garg [29] presented the AOs for IFSS and planned a DM technique based on their settled operators. Peng et al. [30] anticipated the PFSS by merging two prevailing ideas, PFS and SS. Zulqarnain et al. [31], [32] presented some operational laws for PFSS and prolonged the AOs and interaction AOs for PFSS. They also used their developed operators’ green supplier chain management application to establish the decision-making methodologies. Zulqarnain et al. [33] developed the Einstein AOs for PFSS and employed their established AOs in MAGDM. Zulqarnain et al. [34] prolonged the Einstein-ordered operational laws for PFSS and announced the Einstein-ordered weighted ordered geometric AO for PFSS. They also established a MAGDM technique to solve complex real-life complications. Zulqarnain et al. [35] protracted the Einstein-ordered weighted average aggregation operator for PFSS and offered a decision-making technique using their recognized operator. Zulqarnain et al. [36] settled the TOPSIS technique for PFSS using correlation coefficient (CC) and developed the MADM method to resolve DM obstacles. Hussain et al. [37] planned a syndicated study of SS and q-ROFS entitled q-ROFSS. They developed different average AOs on q-ROFSS and debated their properties. Zulqarnain et al. [38] prolonged the novel MCDM technique by employing the interaction AOs for q-ROFSS. Chinram et al. [39] established the geometric AOs under the q-ROFSS setting and used their protracted AOs in MCDM obstacles. Still, the above techniques are not adequately deal with the uncertain information in some cases.
A. Motivation and Shortcomings of Existing Methods
The q-ROFSS is an amalgam logical configuration of SS, PFSS, and the q-ROFS are dominant scientific tools for allocating anonymous and restricted data. It has been identified that AOs are imperious in decision-making, so collectively assessed facts from unlike causes can be collected in a distinctive valuation. To the unsurpassed of our consideration, Einstein AOs with hybridization with a SS and q-ROFS have no presence in the literature. Still, existing AOs for q-ROFSS cannot expertly deal with uncertain and imprecise information during the decision-making (DM) process. Moreover, the model states that the whole MD (NMD) is self-determining it’s NMD (MD). Hence, agreeing to these replicas, the consequences are not productive, so no proper inclination is indicated for substitutes. So, how to integrate these q-ROFSNs over Einstein operations is a fascinating subject. We will introduce the Einstein AOs for q-ROFSS, such as q-ROFSEWG and q-ROFSEOWG. The developed Einstein geometric AOs are proficient compared to prevailing amalgam organizations of fuzzy sets. The above replicas have inferred that the general MD (NMD) is liberated of its compatible NMD (MD) values. As a result, the consequences of these AOs are inconsistent, and no substitute for alternatives is given. Therefore, incorporating these q-ROFSNs through Einstein AOs is an interesting subject. The methodologies chosen in [39] are inadequate to examine the data with a reflective intelligence for higher notion and correct inferences. For example,
B. Contribution
The Einstein geometric AOs are a well-known fascinating conjecture AOs. It has been perceived that the predominant AOs appear apathetic to designing the precise decision over the DM process in some surroundings. To overcome these specific complications, these AOs prerequisite to be modified. So, to stimulate the existing study and boundaries stated above of q-ROFSS, we will state Einstein’s geometric AOs built on weird facts; the essential purposes of the subsequent research are assumed as follows:
We determine innovative operational laws constructed on Einstein operations for q-ROFSNs.
The q-ROFSS expertly contracts the multifaceted matters, seeing the DM procedure’s attributes. To preserve this improvement in attention, we institute the Einstein geometric AOs for q-ROFSS.
The q-ROFSEWG and q-ROFSEOWG operators have been recognized using Einstein operational laws.
An innovative MCDM method is built on the projected Einstein geometric AOs to handle DM problems under the q-ROFSS setting.
DM is a notable feature of medical science as it perceives the concrete criteria of all ingredients. Medical diagnosis is a demanding but noteworthy stage in the creative process.
A comparative study of the advanced MCDM process and existing methodologies has been anticipated to measure pragmatism and sovereignty.
Preliminaries
This section will collect the main descriptions that support us in assembling the consequent article configuration.
A. Definition 1 [26]
Let \begin{equation*}\left ({\mathcal {F,A}}\right)=\left \{{\mathcal {F}\left ({{e}}\right) \mathcal {\in P}\left ({\mathfrak {U}}\right):{e}{\in }\mathcal {E,~F} \left ({{e}}\right)=\,\,{\emptyset }~if~{e}{\not \in }\mathcal {A}}\right \}\end{equation*}
B. Definition 2 [5]
Let \begin{align*}&\hspace {-1pc}{{\mu _{\wp }}\left ({{\boldsymbol {u}}}\right),~{\vartheta }_{\wp }}\left ({{\boldsymbol {u}}}\right): \mathfrak {U}\rightarrow \left [{0,~1}\right], {\left ({{\mu _{\wp }}\left ({{\boldsymbol {u}}}\right)}\right)^{2}} \\&+ {\left ({{\vartheta _{\wp }}\left ({{\boldsymbol {u}}}\right)}\right)^{2}}{\leq }1\,{}~\text {for all} ~ {\boldsymbol {u}}\in \mathfrak {U}.\end{align*}
C. Definition 3 [30]
Let \begin{align*} {\mathcal {F} _{ {\boldsymbol {u}}_{i}}}({e_{j}})=&\left \{{\left ({{ {\boldsymbol {u}}_{i}},~{\mu _{j}}\left ({{ {\boldsymbol {u}}_{i}}}\right),~{\vartheta _{j}}\left ({{ {\boldsymbol {u}}_{i}}}\right)}\right)\vert { {\boldsymbol {u}}_{i}}\in \mathfrak {U}}\right \}{.} \\ \quad \mathcal {F} {:~} \mathcal {E}\rightarrow&P{\mathcal {K} ^{\mathfrak {U}}}\end{align*}
For readers’ suitability, the PFSN can be stated as
Assume three PFSNs, such as
\begin{equation*}~{\aleph _{\mathsf {e}_{11}}}{\oplus }{\aleph _{\mathsf {e}_{12}}}=\left \langle{ \sqrt {{{\mu _{11}}^{2}}+{{\mu _{12}}^{2}}-{{\mu _{11}}^{2}}{{\mu _{12}}^{2}}}, ~{\vartheta _{11}}{\vartheta _{12}}}\right \rangle\end{equation*} View Source\begin{equation*}~{\aleph _{\mathsf {e}_{11}}}{\oplus }{\aleph _{\mathsf {e}_{12}}}=\left \langle{ \sqrt {{{\mu _{11}}^{2}}+{{\mu _{12}}^{2}}-{{\mu _{11}}^{2}}{{\mu _{12}}^{2}}}, ~{\vartheta _{11}}{\vartheta _{12}}}\right \rangle\end{equation*}
\begin{equation*}~{\aleph _{\mathsf {e}_{11}}}{\otimes }{\aleph _{\mathsf {e}_{12}}}=\left \langle{ {\mu _{11}}{\mu _{12}},~\sqrt {{{\vartheta _{11}}^{2}}+{{\vartheta _{12}}^{2}} -{{\vartheta _{11}}^{2}}{{\vartheta _{12}}^{2}}}}\right \rangle\end{equation*} View Source\begin{equation*}~{\aleph _{\mathsf {e}_{11}}}{\otimes }{\aleph _{\mathsf {e}_{12}}}=\left \langle{ {\mu _{11}}{\mu _{12}},~\sqrt {{{\vartheta _{11}}^{2}}+{{\vartheta _{12}}^{2}} -{{\vartheta _{11}}^{2}}{{\vartheta _{12}}^{2}}}}\right \rangle\end{equation*}
\begin{equation*}~{\alpha }{\aleph _{\mathsf {e}}}{\,\,=\,\,}\left \langle{ \sqrt {1-{\left ({1-{\mu ^{2}}}\right)^{\alpha }}},~{\vartheta ^{\alpha }}}\right \rangle {}\end{equation*} View Source\begin{equation*}~{\alpha }{\aleph _{\mathsf {e}}}{\,\,=\,\,}\left \langle{ \sqrt {1-{\left ({1-{\mu ^{2}}}\right)^{\alpha }}},~{\vartheta ^{\alpha }}}\right \rangle {}\end{equation*}
\begin{equation*}~{\aleph _{\mathsf {e}}^{\alpha }}{\,\,=\,\,}\left \langle{ {\mu ^{\alpha }},~\sqrt {1-{\left ({1-{\vartheta ^{2}}}\right)^{\alpha }}}}\right \rangle {}\end{equation*} View Source\begin{equation*}~{\aleph _{\mathsf {e}}^{\alpha }}{\,\,=\,\,}\left \langle{ {\mu ^{\alpha }},~\sqrt {1-{\left ({1-{\vartheta ^{2}}}\right)^{\alpha }}}}\right \rangle {}\end{equation*}
D. Definition 4 [37]
Let \begin{align*}\quad {\mathfrak {I}_{\mathsf {e}_{j}}}({ {\boldsymbol {u}}_{i}})=&\left \{{\left ({{ {\boldsymbol {u}}_{i}},~{\mu _{j}^{q}}\left ({{ {\boldsymbol {u}}_{i}}}\right),~{\vartheta _{j}^{q}}\left ({{ {\boldsymbol {u}}_{i}}}\right)}\right)\vert { {\boldsymbol {u}}_{i}}\in \mathfrak {U,~}q{\geq }3}\right \}{.} \\ {}~\mathfrak {I}{:~} \mathcal {F}\rightarrow&{q-ROFS^{\mathfrak {(U)}}}\end{align*}
Suppose
\begin{align*}~&\hspace {-1pc}{\aleph _{\mathsf {e}_{11}}}{\oplus }{\aleph _{\mathsf {e}_{12}}} \\=&\left \langle{ \sqrt [{q}]{{\left ({{\mu _{11}}}\right)^{q}}+{\left ({{\mu _{12}}}\right)^{q}} -{\left ({{\mu _{11}}}\right)^{q}}{\left ({{\mu _{12}}}\right)^{q}}},~{\vartheta _{11}}{\vartheta _{12}}}\right \rangle {}\end{align*} View Source\begin{align*}~&\hspace {-1pc}{\aleph _{\mathsf {e}_{11}}}{\oplus }{\aleph _{\mathsf {e}_{12}}} \\=&\left \langle{ \sqrt [{q}]{{\left ({{\mu _{11}}}\right)^{q}}+{\left ({{\mu _{12}}}\right)^{q}} -{\left ({{\mu _{11}}}\right)^{q}}{\left ({{\mu _{12}}}\right)^{q}}},~{\vartheta _{11}}{\vartheta _{12}}}\right \rangle {}\end{align*}
\begin{align*}&\hspace {-1pc}{\aleph _{\mathsf {e}_{11}}}{\otimes }{\aleph _{\mathsf {e}_{12}}} \\=&\left \langle{ {\mu _{11}}{\mu _{12}},~\sqrt [{q}]{{\left ({{\vartheta _{11}}}\right)^{q}} +{\left ({{\vartheta _{12}}}\right)^{q}}-{\left ({{\vartheta _{11}}}\right)^{q}}{\left ({{\vartheta _{12}}}\right)^{q}}} }\right \rangle {}\end{align*} View Source\begin{align*}&\hspace {-1pc}{\aleph _{\mathsf {e}_{11}}}{\otimes }{\aleph _{\mathsf {e}_{12}}} \\=&\left \langle{ {\mu _{11}}{\mu _{12}},~\sqrt [{q}]{{\left ({{\vartheta _{11}}}\right)^{q}} +{\left ({{\vartheta _{12}}}\right)^{q}}-{\left ({{\vartheta _{11}}}\right)^{q}}{\left ({{\vartheta _{12}}}\right)^{q}}} }\right \rangle {}\end{align*}
\begin{equation*}~{\alpha }{\aleph _{\mathsf {e}}}{\,\,=\,\,}\left \langle{ \sqrt {1-{\left ({1-{\mu ^{q}}}\right)^{\alpha }}},~{\vartheta ^{\alpha }}}\right \rangle {}\end{equation*} View Source\begin{equation*}~{\alpha }{\aleph _{\mathsf {e}}}{\,\,=\,\,}\left \langle{ \sqrt {1-{\left ({1-{\mu ^{q}}}\right)^{\alpha }}},~{\vartheta ^{\alpha }}}\right \rangle {}\end{equation*}
\begin{equation*}~{\aleph ^{\alpha }}{\,\,=\,\,}\left \langle{ {\mu ^{\alpha }}~,~\sqrt {1-{\left ({1-{\vartheta ^{q}}}\right)^{\alpha }}}}\right \rangle {}\end{equation*} View Source\begin{equation*}~{\aleph ^{\alpha }}{\,\,=\,\,}\left \langle{ {\mu ^{\alpha }}~,~\sqrt {1-{\left ({1-{\vartheta ^{q}}}\right)^{\alpha }}}}\right \rangle {}\end{equation*}
For q-ROFSNs collection \begin{align*}&\hspace {-1pc}q-ROFSWA~\left ({{\aleph _{\mathsf {e}_{11}}},~{\aleph _{\mathsf {e}_{12}}},\ldots,~{\aleph _{\mathsf {e}_{nm}}}}\right) \\=&\left \langle{ \sqrt [{q}]{1-\mathop {\prod }\nolimits _{j=1}^{m}{\left ({\mathop {\prod }\nolimits _{i=1}^{n} {\left ({1-{{\mu _{ij}}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}},}\right. \\&\left.{\mathop {\prod }\nolimits _{j=1}^{m}{\left ({\mathop {\prod }\nolimits _{i=1}^{n} {\left ({{\vartheta _{ij}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}}\right \rangle {} \\&\hspace {-1pc}q-ROFSWG~\left ({{\aleph _{\mathsf {e}_{11}}},~{\aleph _{\mathsf {e}_{12}}},\ldots,~{\aleph _{\mathsf {e}_{nm}}}}\right) \\=&\left \langle{ \mathop {\prod }\nolimits _{j=1}^{m}{\left ({\mathop {\prod }\nolimits _{i=1}^{n}{\left ({{\mu _{ij}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}},}\right. \\&\left.{\sqrt [{q}]{1-\mathop {\prod }\nolimits _{j=1}^{m} {\left ({\mathop {\prod }\nolimits _{i=1}^{n}{\left ({1-{{\vartheta _{ij}}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}}}\right \rangle {.}\end{align*}
E. Definition 5 [37]
Let \begin{align*}~S({\aleph _{\mathsf {e}_{ij}}})=&{\mu _{ij}^{q}}-{\vartheta _{ij}^{q}} +\left ({\frac {e^{{\mu _{ij}^{q}}-{\vartheta _{ij}^{q}}}}{{e^{{\mu _{ij}^{q}} -{\vartheta _{ij}^{q}}}}+1}-\frac {1}{2}}\right){\beth _{\aleph _{\mathsf {e}_{ij}}}^{q}}, \\&\quad {~\text {for}~}q{\geq }3{~\text {and}~}S({\aleph _{\mathsf {e}_{ij}}}){\in }\left [{-1,~1}\right]{. }\tag{1}\end{align*}
If
If
If
If
If
Einstein Geometric Aggregation Operator for Q- Rung Orthopair Fuzzy Soft Numbers
This section introduces Einstein’s operations under q-ROFSN. Moreover, using the q-ROFSEWG operator with the desired properties is endorsed.
A. Einstein Operational Laws for Q-ROFSNs
1) Definition
Let
\begin{align*}&\hspace {-1pc}{\aleph _{\mathsf {e}_{11}}}{\oplus }{\aleph _{\mathsf {e}_{12}}} \\=&\left \langle{ \frac {\sqrt [{q}]{\left ({1+{\mu _{11}^{q}}}\right)-\,\,\left ({1-{\mu _{12}^{q}}}\right)}} {\sqrt [{q}]{\left ({1+{\mu _{11}^{q}}}\right)+\left ({1-{\mu _{12}^{q}}}\right)}}, \left.{\frac {\sqrt [{q}]{2{\vartheta }_{11}^{q}}}{\sqrt [{q}]{\left ({2-{\vartheta _{11}^{q}}}\right) +{\vartheta _{12}^{q}}}}}\right \rangle }\right.\end{align*} View Source\begin{align*}&\hspace {-1pc}{\aleph _{\mathsf {e}_{11}}}{\oplus }{\aleph _{\mathsf {e}_{12}}} \\=&\left \langle{ \frac {\sqrt [{q}]{\left ({1+{\mu _{11}^{q}}}\right)-\,\,\left ({1-{\mu _{12}^{q}}}\right)}} {\sqrt [{q}]{\left ({1+{\mu _{11}^{q}}}\right)+\left ({1-{\mu _{12}^{q}}}\right)}}, \left.{\frac {\sqrt [{q}]{2{\vartheta }_{11}^{q}}}{\sqrt [{q}]{\left ({2-{\vartheta _{11}^{q}}}\right) +{\vartheta _{12}^{q}}}}}\right \rangle }\right.\end{align*}
\begin{align*}&\hspace {-1pc}{\aleph _{\mathsf {e}_{11}}}{\otimes }{\aleph _{\mathsf {e}_{12}}} \\=&\left \langle{ \frac {\sqrt [{q}]{2{\mu }_{11}^{q}}}{\sqrt [{q}]{\left ({2-{\mu _{11}^{q}}}\right) +{\mu _{12}^{q}}}},\left.{\frac {\sqrt [{q}]{\left ({1+{\vartheta _{11}^{q}}}\right) -\left ({1-{\vartheta _{12}^{q}}}\right)}}{\sqrt [{q}]{\left ({1+{\vartheta _{11}^{q}}}\right) +\left ({1-{\vartheta _{12}^{q}}}\right)}}}\right \rangle }\right.\end{align*} View Source\begin{align*}&\hspace {-1pc}{\aleph _{\mathsf {e}_{11}}}{\otimes }{\aleph _{\mathsf {e}_{12}}} \\=&\left \langle{ \frac {\sqrt [{q}]{2{\mu }_{11}^{q}}}{\sqrt [{q}]{\left ({2-{\mu _{11}^{q}}}\right) +{\mu _{12}^{q}}}},\left.{\frac {\sqrt [{q}]{\left ({1+{\vartheta _{11}^{q}}}\right) -\left ({1-{\vartheta _{12}^{q}}}\right)}}{\sqrt [{q}]{\left ({1+{\vartheta _{11}^{q}}}\right) +\left ({1-{\vartheta _{12}^{q}}}\right)}}}\right \rangle }\right.\end{align*}
\begin{align*}&\hspace {-1pc}{\alpha }{\aleph _{\mathsf {e}}} \\=&\left \langle{ \! \frac {\sqrt [{q}]{{\left ({1+{\mu ^{q}}}\right)^{\partial }} -{\left ({1-{\mu ^{q}}}\right)^{\partial }}}}{\sqrt [{q}]{{\left ({1+{\mu ^{q}}}\right)^{\partial }} +{\left ({1-{\mu ^{q}}}\right)^{\partial }}}},\!\left.{\frac {\sqrt [{q}]{{2({\vartheta }^{q}})^{\partial }}} {\sqrt [{q}]{{\left ({2-{\vartheta ^{q}}}\right)^{\partial }}+{{({\vartheta }^{q}})^{\partial }}}}\!}\right \rangle }\right.\end{align*} View Source\begin{align*}&\hspace {-1pc}{\alpha }{\aleph _{\mathsf {e}}} \\=&\left \langle{ \! \frac {\sqrt [{q}]{{\left ({1+{\mu ^{q}}}\right)^{\partial }} -{\left ({1-{\mu ^{q}}}\right)^{\partial }}}}{\sqrt [{q}]{{\left ({1+{\mu ^{q}}}\right)^{\partial }} +{\left ({1-{\mu ^{q}}}\right)^{\partial }}}},\!\left.{\frac {\sqrt [{q}]{{2({\vartheta }^{q}})^{\partial }}} {\sqrt [{q}]{{\left ({2-{\vartheta ^{q}}}\right)^{\partial }}+{{({\vartheta }^{q}})^{\partial }}}}\!}\right \rangle }\right.\end{align*}
\begin{align*}&\hspace {-1pc}{\aleph _{\mathsf {e}}^{\alpha }} \\=&\left \langle{ \!\!\frac {\sqrt [{q}]{2\left ({{\mu ^{q}}}\right)^{\partial }}}{\sqrt [{q}]{{\left ({2-{\mu ^{q}}}\right)^{\partial }} +{\left ({{\mu ^{q}}}\right)^{\partial }}}},\!\frac {\sqrt [{q}]{{\left ({1+{\vartheta ^{q}}}\right)^{\partial }} -{\left ({1-{\vartheta ^{q}}}\right)^{\partial }}}}{\sqrt [{q}]{{\left ({1+{\vartheta ^{q}}}\right)^{\partial }} +{\left ({1-{\vartheta ^{q}}}\right)^{\partial }}}}\!}\right \rangle.\end{align*} View Source\begin{align*}&\hspace {-1pc}{\aleph _{\mathsf {e}}^{\alpha }} \\=&\left \langle{ \!\!\frac {\sqrt [{q}]{2\left ({{\mu ^{q}}}\right)^{\partial }}}{\sqrt [{q}]{{\left ({2-{\mu ^{q}}}\right)^{\partial }} +{\left ({{\mu ^{q}}}\right)^{\partial }}}},\!\frac {\sqrt [{q}]{{\left ({1+{\vartheta ^{q}}}\right)^{\partial }} -{\left ({1-{\vartheta ^{q}}}\right)^{\partial }}}}{\sqrt [{q}]{{\left ({1+{\vartheta ^{q}}}\right)^{\partial }} +{\left ({1-{\vartheta ^{q}}}\right)^{\partial }}}}\!}\right \rangle.\end{align*}
2) Definition
Let \begin{align*}&\hspace {-2pc}q-ROFSEWG~\left ({{\aleph _{\mathsf {e}_{11}}},~{\aleph _{\mathsf {e}_{12}}},\ldots,{\aleph _{\mathsf {e}_{nm}}}}\right) \\=&{\otimes _{j=1}^{m}}{\left ({{\otimes _{i=1}^{n}}{\left ({{\aleph _{\mathsf {e}_{ij}}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}{.~}\tag{2}\end{align*}
3) Theorem
Let \begin{align*}&\hspace {-1pc}q-ROFSEWG~\left ({{\aleph _{\mathsf {e}_{11}}},~{\aleph _{\mathsf {e}_{12}}},\ldots,{\aleph _{\mathsf {e}_{nm}}}}\right) \\=&{\otimes _{j=1}^{m}}{\left ({{\otimes _{i=1}^{n}}{\left ({{\aleph _{\mathsf {e}_{ij}}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}} \\=&\left \langle{ \frac {\sqrt [{q}]{2\mathop {\prod }\nolimits _{j=1}^{m}{\left ({\mathop {\prod }\nolimits _{i=1}^{n} {\left ({{\mu _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}}}{\sqrt [{q}]{\mathop {\prod }\nolimits _{j=1}^{m}{\left ({\mathop {\prod }\nolimits _{i=1}^{n} {\left ({2-{\mu _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}+\mathop {\prod }\nolimits _{j=1}^{m}{\left ({\mathop {\prod }\nolimits _{i=1}^{n} {\left ({{\mu _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}}}}\right., \\&\left.{\frac {\sqrt [{q}]{\mathop {\prod }\nolimits _{j=1}^{m} {\left ({\mathop {\prod }\nolimits _{i=1}^{n}{\left ({1+{\vartheta _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}-\mathop {\prod }\nolimits _{j=1}^{m}{\left ({\mathop {\prod }\nolimits _{i=1}^{n} {\left ({1-{\vartheta _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}}}{\sqrt [{q}]{\mathop {\prod }\nolimits _{j=1}^{m} {\left ({\mathop {\prod }\nolimits _{i=1}^{n}{\left ({1+{\vartheta _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}+\,\,\mathop {\prod }\nolimits _{j=1}^{m} {\left ({\mathop {\prod }\nolimits _{i=1}^{n}{\left ({1-{\vartheta _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}}}}\right \rangle \\\tag{3}\end{align*}
Proof:
Using mathematical induction:
For \begin{align*}&\hspace {-1pc}q-ROFSEWG~\left ({{\aleph _{\mathsf {e}_{11}}},~{\aleph _{\mathsf {e}_{12}}},\ldots,{\aleph _{\mathsf {e}_{nm}}}}\right) \\=&{\otimes _{j=1}^{m}}{\left ({{\otimes _{i=1}^{n}}{\left ({{\aleph _{\mathsf {e}_{ij}}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}{~} \\&\hspace {-1pc}q-ROFSEWG~\left ({{\aleph _{\mathsf {e}_{11}}},~{\aleph _{\mathsf {e}_{12}}},\ldots,{\aleph _{\mathsf {e}_{nm}}}}\right) \\=&{\otimes _{j=1}^{m}}{\left ({{\aleph _{\mathsf {e}_{1 j}}}}\right)^{\gamma _{j}}} \\ {}=&\left \langle{ \frac {\sqrt [{q}]{2\mathop {\prod }\nolimits _{j=1}^{m}{\left ({{\mu _{1 j}^{q}}}\right)^{\gamma _{j}}}}}{\sqrt [{q}]{\mathop {\prod }\nolimits _{j=1}^{m}{\left ({2-{\mu _{1 j}^{q}}}\right)^{\gamma _{j}}}+\mathop {\prod }\nolimits _{j=1}^{m}{\left ({{\mu _{1 j}^{q}}}\right)^{\gamma _{j}}}}}}\right., \\&\left.{\frac {\sqrt [{q}]{\mathop {\prod }\nolimits _{j=1}^{m}{\left ({1+{\vartheta _{1 j}^{q}}}\right)^{\gamma _{j}}}-\mathop {\prod }\nolimits _{j=1}^{m}{\left ({1-{\vartheta _{1 j}^{q}}}\right)^{\gamma _{j}}}}}{\sqrt [{q}]{\mathop {\prod }\nolimits _{j=1}^{m}{\left ({1+{\vartheta _{ij}^{q}}}\right)^{\gamma _{j}}}+\,\,\mathop {\prod }\nolimits _{j=1}^{m}{\left ({1-{\vartheta _{ij}^{q}}}\right)^{\gamma _{j}}}}}}\right \rangle {} \\=&\left \langle{ \frac {\sqrt [{q}]{2\mathop {\prod }\nolimits _{j=1}^{m}{\left ({\mathop {\prod }\nolimits _{i=1}^{1} {\left ({{\mu _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}}}{\sqrt [{q}]{\mathop {\prod }\nolimits _{j=1}^{m} {\left ({\mathop {\prod }\nolimits _{i=1}^{1}{\left ({2-{\mu _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}+\mathop {\prod }\nolimits _{j=1}^{m}{\left ({\mathop {\prod }\nolimits _{i=1}^{1} {\left ({{\mu _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}}}}\right., \\&\left.{\frac {\sqrt [{q}]{\mathop {\prod }\nolimits _{j=1}^{m} {\left ({\mathop {\prod }\nolimits _{i=1}^{1}{\left ({1+{\vartheta _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}-\mathop {\prod }\nolimits _{j=1}^{m}{\left ({\mathop {\prod }\nolimits _{i=1}^{1} {\left ({1-{\vartheta _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}}}{\sqrt [{q}]{\mathop {\prod }\nolimits _{j=1}^{m} {\left ({\mathop {\prod }\nolimits _{i=1}^{1}{\left ({1+{\vartheta _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}+\,\,\mathop {\prod }\nolimits _{j=1}^{m}{\left ({\mathop {\prod }\nolimits _{i=1}^{1} {\left ({1-{\vartheta _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}}}}\right \rangle {}\end{align*}
\begin{align*}&\hspace {-1pc}q-ROFSEWG~\left ({{\aleph _{\mathsf {e}_{11}}},~{\aleph _{\mathsf {e}_{12}}},\ldots,{\aleph _{\mathsf {e}_{nm}}}}\right) \\=&{\otimes _{i=1}^{n}}{\left ({{\aleph _{\mathsf {e}_{i1}}}}\right)^{\Omega _{i}}} \\=&\left \langle{ \frac {\sqrt [{q}]{2\mathop {\prod }\nolimits _{i=1}^{n}{\left ({{\mu _{ij}^{q}}}\right)^{\Omega _{i}}}}}{\sqrt [{q}]{\mathop {\prod }\nolimits _{i=1}^{n}{\left ({2-{\mu _{ij}^{q}}}\right)^{\Omega _{i}}}+\mathop {\prod }\nolimits _{i=1}^{n}{\left ({{\mu _{ij}^{q}}}\right)^{\Omega _{i}}}}}}\right., \\&\left.{\frac {\sqrt [{q}]{\mathop {\prod }\nolimits _{i=1}^{n}{\left ({1+{\vartheta _{ij}^{q}}}\right)^{\Omega _{i}}}-\,\,\mathop {\prod }\nolimits _{i=1}^{n}{\left ({1-{\vartheta _{ij}^{q}}}\right)^{\Omega _{i}}}}}{\sqrt [{q}]{\mathop {\prod }\nolimits _{i=1}^{n}{\left ({1+{\vartheta _{ij}^{q}}}\right)^{\Omega _{i}}}+\,\,\mathop {\prod }\nolimits _{i=1}^{n}{\left ({1-{\vartheta _{ij}^{q}}}\right)^{\Omega _{i}}}}}}\right \rangle {} \\=&\left \langle{ \frac {\sqrt [{q}]{2\mathop {\prod }\nolimits _{j=1}^{1}{\left ({\mathop {\prod }\nolimits _{i=1}^{n}{\left ({{\mu _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}}}{\sqrt [{q}]{\mathop {\prod }\nolimits _{j=1}^{1}{\left ({\mathop {\prod }\nolimits _{i=1}^{n}{\left ({2-{\mu _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}+\mathop {\prod }\nolimits _{j=1}^{1}{\left ({\mathop {\prod }\nolimits _{i=1}^{n}{\left ({{\mu _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}}}}\right., \\&\left.{\frac {\sqrt [{q}]{\mathop {\prod }\nolimits _{j=1}^{1}{\left ({\mathop {\prod }\nolimits _{i=1}^{n}{\left ({1+{\vartheta _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}-\mathop {\prod }\nolimits _{j=1}^{1}{\left ({\mathop {\prod }\nolimits _{i=1}^{n}{\left ({1-{\vartheta _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}}}{\sqrt [{q}]{\mathop {\prod }\nolimits _{j=1}^{1}{\left ({\mathop {\prod }\nolimits _{i=1}^{n}{\left ({1+{\vartheta _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}+\,\,\mathop {\prod }\nolimits _{j=1}^{1}{\left ({\mathop {\prod }\nolimits _{i=1}^{n}{\left ({1-{\vartheta _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}}}}\right \rangle {}\end{align*}
Assume for \begin{align*}&\hspace {-2pc}q-ROFSEWG~\left ({{\aleph _{\mathsf {e}_{11}}},~{\aleph _{\mathsf {e}_{12}}},\ldots,{\aleph _{\mathsf {e}_{nm}}}}\right) \\=&{\otimes _{j=1}^{{\delta _{1}}+1}}{\left ({{\otimes _{i=1}^{\delta _{2}}}{\left ({{\aleph _{\mathsf {e}_{ij}}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}} \\=&\left \langle{ \frac {\sqrt [{q}]{2\mathop {\prod }\nolimits _{j=1}^{{\delta _{1}}+1} {\left ({\mathop {\prod }\nolimits _{i=1}^{\delta _{2}}{\left ({{\mu _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}}}{\sqrt [{q}]{\mathop {\prod }\nolimits _{j=1}^{{\delta _{1}}+1} {\left ({\mathop {\prod }\nolimits _{i=1}^{\delta _{2}}{\left ({2-{\mu _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}+\mathop {\prod }\nolimits _{j=1}^{{\delta _{1}}+1} {\left ({\mathop {\prod }\nolimits _{i=1}^{\delta _{2}}{\left ({{\mu _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}}}}\right., \\&\left.{\frac {\sqrt [{q}]{\mathop {\prod }\nolimits _{j=1}^{{\delta _{1}}+1} {\left ({\mathop {\prod }\nolimits _{i=1}^{\delta _{2}}{\left ({1+{\vartheta _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}-\mathop {\prod }\nolimits _{j=1}^{{\delta _{1}}+1} {\left ({\mathop {\prod }\nolimits _{i=1}^{\delta _{2}}{\left ({1-{\vartheta _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}}}{\sqrt [{q}]{\mathop {\prod }\nolimits _{j=1}^{{\delta _{1}}+1} {\left ({\mathop {\prod }\nolimits _{i=1}^{\delta _{2}}{\left ({1+{\vartheta _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}+\,\,\mathop {\prod }\nolimits _{j=1}^{{\delta _{1}}+1} {\left ({\mathop {\prod }\nolimits _{i=1}^{\delta _{2}}{\left ({1-{\vartheta _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}}}}\right \rangle {} \\&\hspace {-1pc}{\otimes _{j=1}^{\delta _{1}}}{\left ({{\otimes _{i=1}^{{\delta _{2}}+1}}{\left ({{\aleph _{\mathsf {e}_{ij}}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}} \\=&\left \langle{ \frac {\sqrt [{q}]{2\mathop {\prod }\nolimits _{j=1}^{\delta _{1}} {\left ({\mathop {\prod }\nolimits _{i=1}^{{\delta _{2}}+1}{\left ({{\mu _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}}}{\sqrt [{q}]{\mathop {\prod }\nolimits _{j=1}^{\delta _{1}} {\left ({\mathop {\prod }\nolimits _{i=1}^{{\delta _{2}}+1}{\left ({2-{\mu _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}+\mathop {\prod }\nolimits _{j=1}^{\delta _{1}}{\left ({\mathop {\prod }\nolimits _{i=1}^{{\delta _{2}}+1}{\left ({{\mu _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}}}}\right., \\&\left.{\frac {\sqrt [{q}]{\mathop {\prod }\nolimits _{j=1}^{\delta _{1}}{\left ({\mathop {\prod }\nolimits _{i=1}^{{\delta _{2}}+1}{\left ({1+{\vartheta _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}-\mathop {\prod }\nolimits _{j=1}^{\delta _{1}}{\left ({\mathop {\prod }\nolimits _{i=1}^{{\delta _{2}}+1}{\left ({1-{\vartheta _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}}}{\sqrt [{q}]{\mathop {\prod }\nolimits _{j=1}^{\delta _{1}}{\left ({\mathop {\prod }\nolimits _{i=1}^{{\delta _{2}}+1}{\left ({1+{\vartheta _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}+\,\,\mathop {\prod }\nolimits _{j=1}^{\delta _{1}}{\left ({\mathop {\prod }\nolimits _{i=1}^{{\delta _{2}}+1}{\left ({1-{\vartheta _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}}}}\right \rangle {}\end{align*}
Now, for
So, it is valid for
4) Example
Let \begin{align*}&\hspace {-1pc}\left ({\aleph,~{\mathfrak {L}^{\prime }}}\right) \\=&\left \lceil{ \!\! {\begin{array}{cccc}(0.27,~0.72)& (0.5,~0.2)& \left ({0.76,~0.44}\right)& \left ({0.9,~0.3}\right)\\ \left ({0.53,~0.94}\right)& \left ({0.6,~0.34}\right)& \left ({0.3,~0.95}\right)& \left ({0.6,~0.54}\right)\\ \left ({0.36,~0.6}\right)& \left ({0.8,~0.4}\right)& \left ({0.44,~0.5}\right)& \left ({0.56,~0.71}\right)\\ \left ({0.80,~0.37}\right)& \left ({0.1,~0.7}\right)& \left ({0.27,~0.75}\right)& \left ({0.59,~0.8}\right)\\ (0.91,~0.2)& (0.29,~0.67)& (0.31,~0.67)& (0.6,~0.4)\end{array}}\!\!}\right \rceil\end{align*}
\begin{align*}&\hspace {-1pc}q-ROFSEWG~\left ({{\aleph _{\mathsf {e}_{11}}},~{\aleph _{\mathsf {e}_{12}}},\ldots,{\aleph _{\mathsf {e}_{nm}}}}\right) \\=&\left \langle{ \frac {\sqrt [{q}]{2\mathop {\prod }\nolimits _{j=1}^{m}{\left ({\mathop {\prod }\nolimits _{i=1}^{n} {\left ({{\mu _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}}}{\sqrt [{q}]{\mathop {\prod }\nolimits _{j=1}^{m} {\left ({\mathop {\prod }\nolimits _{i=1}^{n}{\left ({2-{\mu _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}+\mathop {\prod }\nolimits _{j=1}^{m} {\left ({\mathop {\prod }\nolimits _{i=1}^{n}{\left ({{\mu _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}}}}\right., \\&\left.{\frac {\sqrt [{q}]{\mathop {\prod }\nolimits _{j=1}^{m} {\left ({\mathop {\prod }\nolimits _{i=1}^{n}{\left ({1+{\vartheta _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}-\mathop {\prod }\nolimits _{j=1}^{m} {\left ({\mathop {\prod }\nolimits _{i=1}^{n}{\left ({1-{\vartheta _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}}}{\sqrt [{q}]{\mathop {\prod }\nolimits _{j=1}^{m} {\left ({\mathop {\prod }\nolimits _{i=1}^{n}{\left ({1+{\vartheta _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}+\,\,\mathop {\prod }\nolimits _{j=1}^{m}{\left ({\mathop {\prod }\nolimits _{i=1}^{n}{\left ({1-{\vartheta _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}}}}\right \rangle {} \\&\hspace {-1pc}q-ROFSEWG~\left ({{\aleph _{\mathsf {e}_{11}}},~{\aleph _{\mathsf {e}_{12}}},\ldots,{\aleph _{\mathsf {e}_{54}}}}\right) \\=&\left \langle{ \frac {\sqrt [{q}]{2\mathop {\prod }\nolimits _{j=1}^{4} {\left ({\mathop {\prod }\nolimits _{i=1}^{5}{\left ({{\mu _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}}}{\sqrt [{q}]{\mathop {\prod }\nolimits _{j=1}^{4} {\left ({\mathop {\prod }\nolimits _{i=1}^{5}{\left ({2-{\mu _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}+\mathop {\prod }\nolimits _{j=1}^{4}{\left ({\mathop {\prod }\nolimits _{i=1}^{5} {\left ({{\mu _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}}}}\right., \\&\left.{\frac {\sqrt [{q}] {\mathop {\prod }\nolimits _{j=1}^{4}{\left ({\mathop {\prod }\nolimits _{i=1}^{5} {\left ({1+{\vartheta _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}-\mathop {\prod }\nolimits _{j=1}^{4}{\left ({\mathop {\prod }\nolimits _{i=1}^{5} {\left ({1-{\vartheta _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}}}{\sqrt [{q}]{\mathop {\prod }\nolimits _{j=1}^{4}{\left ({\mathop {\prod }\nolimits _{i=1}^{5} {\left ({1+{\vartheta _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}+\,\,\mathop {\prod }\nolimits _{j=1}^{4}{\left ({\mathop {\prod }\nolimits _{i=1}^{5}{\left ({1-{\vartheta _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}}}}\right \rangle {} \\{}\end{align*}
5) Theorem
Let \begin{align*}&\hspace {-2pc}q-ROFSWG~\left({{\aleph _{\mathsf {e}_{11}}},~{\aleph _{\mathsf {e}_{12}}},\ldots,~{\aleph _{\mathsf {e}_{nm}}}}\right) \\{\leq }&q-ROFSEWG~\left({{\aleph _{\mathsf {e}_{11}}},~{\aleph _{\mathsf {e}_{12}}},\ldots,{\aleph _{\mathsf {e}_{nm}}}}\right)\end{align*}
Proof:
As we know that \begin{align*}&\hspace {-1pc}\sqrt [{q}]{\mathop {\prod }\nolimits _{j=1}^{m}{\left({\mathop {\prod }\nolimits _{i=1}^{n} {\left({2-{\mu _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}+\mathop {\prod }\nolimits _{j=1}^{m}{\left({\mathop {\prod }\nolimits _{i=1}^{n} {\left({{\mu _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}} \\{\leq }&\sqrt [{q}]{\mathop {\prod }\nolimits _{j=1}^{m}{\gamma _{j}}\left({\mathop {\prod }\nolimits _{i=1}^{n}{\Omega _{i}}\left({2-{\mu _{ij}^{q}}}\right)}\right)+\mathop {\prod }\nolimits _{j=1}^{m}{\gamma _{j}}\left({\mathop {\prod }\nolimits _{i=1}^{n}{\Omega _{i}}\left({{\mu _{ij}^{q}}}\right)}\right)} \\&\hspace {-1pc}\sqrt [{q}]{\mathop {\prod }\nolimits _{j=1}^{m}{\gamma _{j}}\left({\mathop {\prod }\nolimits _{i=1}^{n}{\Omega _{i}}\left({2-{\mu _{ij}^{q}}}\right)}\right)+\mathop {\prod }\nolimits _{j=1}^{m}{\gamma _{j}}\left({\mathop {\prod }\nolimits _{i=1}^{n}{\Omega _{i}}\left({{\mu _{ij}^{q}}}\right)}\right)}=\sqrt [{q}]{2} \\\Rightarrow&\sqrt [{q}]{\mathop {\prod }\nolimits _{j=1}^{m} {\left({\mathop {\prod }\nolimits _{i=1}^{n}{\left({2-{\mu _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}+\mathop {\prod }\nolimits _{j=1}^{m}{\left({\mathop {\prod }\nolimits _{i=1}^{n} {\left({{\mu _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}}{\leq }~\sqrt [{q}]{2} \\\Rightarrow&\frac {\sqrt [{q}]{2\mathop {\prod }\nolimits _{j=1}^{m} {\left({\mathop {\prod }\nolimits _{i=1}^{n}{\left({{\mu _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}}}{\sqrt [{q}]{\mathop {\prod }\nolimits _{j=1}^{m} {\left({\mathop {\prod }\nolimits _{i=1}^{n}{\left({2-{\mu _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}+\mathop {\prod }\nolimits _{j=1}^{m}{\left({\mathop {\prod }\nolimits _{i=1}^{n} {\left({{\mu _{ij}^{q}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}}} \\{\geq }&\mathop {\prod }\nolimits _{j=1}^{m}{\left({\mathop {\prod }\nolimits _{i=1}^{n} {\left({{\mu _{ij}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}{~}\tag{4}\end{align*}
Again (5), as shown at the bottom of page 9.
Let \begin{equation*} q-ROFSWG~\left({{\aleph _{\mathsf {e}_{11}}},~{\aleph _{\mathsf {e}_{12}}},\ldots,~{\aleph _{\mathsf {e}_{nm}}}}\right) = \aleph =\left({{\mu _{\aleph }},{\vartheta _{\aleph }}}\right)\end{equation*}
\begin{equation*}q-ROFSEWG \left({{\aleph _{\mathsf {e}_{11}}},~{\aleph _{\mathsf {e}_{12}}},\ldots,{\aleph _{\mathsf {e}_{nm}}}}\right)={\aleph ^{\varepsilon }}=\left({{\mu _{\aleph ^{\varepsilon }}},{\vartheta _{\aleph ^{\varepsilon }}}}\right){.}\end{equation*}
So,
If \begin{align*}&\hspace {-1pc}q-ROFSWG~\left({{\aleph _{\mathsf {e}_{11}}},~{\aleph _{\mathsf {e}_{12}}},\ldots,~{\aleph _{\mathsf {e}_{nm}}}}\right) \\ < &q-ROFSEWG~\left({{\aleph _{\mathsf {e}_{11}}},~{\aleph _{\mathsf {e}_{12}}},\ldots,{\aleph _{\mathsf {e}_{nm}}}}\right){~}\tag{6}\end{align*}
Then, \begin{align*}&\hspace {-2pc}q-ROFSWG~\left({{\aleph _{\mathsf {e}_{11}}},~{\aleph _{\mathsf {e}_{12}}},\ldots,~{\aleph _{\mathsf {e}_{nm}}}}\right) \\=&q-ROFSEWG~\left({{\aleph _{\mathsf {e}_{11}}},~{\aleph _{\mathsf {e}_{12}}},\ldots,{\aleph _{\mathsf {e}_{nm}}}}\right){~}\tag{7}\end{align*}

6) Example
Let \begin{align*}&\hspace {-1pc}\left({\aleph,~{\mathfrak {L}^{\prime }}}\right) \\=&\left \lceil{ \!\! {\begin{array}{cccc}(0.27,~0.72)& (0.5,~0.2)& \left({0.76,~0.44}\right)& \left({0.9,~0.3}\right)\\ \left({0.53,~0.94}\right)& \left({0.6,~0.34}\right)& \left({0.3,~0.95}\right)& \left({0.6,~0.54}\right)\\ \left({0.36,~0.6}\right)& \left({0.8,~0.4}\right)& \left({0.44,~0.5}\right)& \left({0.56,~0.71}\right)\\ \left({0.80,~0.37}\right)& \left({0.1,~0.7}\right)& \left({0.27,~0.75}\right)& \left({0.59,~0.8}\right)\\ (0.91,~0.2)& (0.29,~0.67)& (0.31,~0.67)& (0.6,~0.4)\end{array}}\!\!}\right \rceil\end{align*}
So, Examples 4 and 6 show that \begin{align*}&\hspace {-2pc}q-ROFSWG~\left({{\aleph _{\mathsf {e}_{11}}},~{\aleph _{\mathsf {e}_{12}}},\ldots,~{\aleph _{\mathsf {e}_{nm}}}}\right) \\{\leq }&q-ROFSEWG~\left({{\aleph _{\mathsf {e}_{11}}},~{\aleph _{\mathsf {e}_{12}}},\ldots,{\aleph _{\mathsf {e}_{nm}}}}\right){.}\end{align*}
B. Properties of Q-ROFSEWG Operator
1) Idempotency
If
2) Boundedness
If
Proof:
Let \begin{align*} \frac {d}{dx}\left({f(x)}\right)=&-\frac {\left [{\frac {q}{x}+\frac {q}{x^{1 +q}}(2-{x^{q}})}\right]\left [{\frac {1}{\theta ^{q}}{\left({2-{x^{q}}}\right)^{-1 +\frac {1}{q}}}}\right]}{q}\frac {-2}{x^{3}} \\ < &0.\end{align*}
\begin{equation*} \sqrt [{q}]{\frac {2-{\mu _{max}^{q}}}{\mu _{max}^{q}}}~{\leq }\sqrt [{q}]{\frac {2-{\mu _{ij}^{q}}}{\mu _{ij}^{q}}} ~{\leq }\sqrt [{q}]{\frac {2-{\mu _{min}^{q}}}{\mu _{min}^{q}}}.\end{equation*}
Again, let
Then, \begin{align*} \frac {d}{dy}\left({g(y)}\right)=&-\frac {\left [{\frac {q}{y}+\frac {q}{y^{1 +q}}(2-{y^{q}})}\right]\left [{\frac {1}{\theta ^{q}}{\left({2-{y^{q}}}\right)^{-1 +\frac {1}{q}}}}\right]}{q}\frac {-2}{y^{3}} \\ < &0.\end{align*}
\begin{equation*}~\Rightarrow \sqrt [{q}]{\frac {1-{\vartheta _{max}^{q}}}{1+{\vartheta _{max}^{q}}}}{\leq }\sqrt [{q}]{\frac {1-{\vartheta _{ij}^{q}}}{1+{\vartheta _{ij}^{q}}}}~{\leq }\sqrt [{q}]{\frac {1-{\vartheta _{min}^{q}}}{1+{\vartheta _{min}^{q}}}}{,}\end{equation*}
Let \begin{align*}&\hspace {-1pc}S({\delta }) \\=&{{\mu _{\delta }}^{q}}-{{\vartheta _{\delta }}^{q}}{\,\,+\,\,} \left({\frac {e^{{{\mu _{\delta }}^{q}}-{{\vartheta _{\delta }}^{q}}}}{{e^{{{\mu _{\delta }}^{q}}- {{\vartheta _{\delta }}^{q}}}}+1}-\,\,\frac {1}{2}}\right){{\pi _{\delta }}^{q}} \\{\leq }&{\left({\!\begin{array}{cc}{max}&{max}\\ {j}&{i}\end{array} \left \{{{\mu _{ij}}}\right \}\!}\right)^{q}}\!-\!{\left({\begin{array}{cc}{min}&{min}\\ {j}&{i}\end{array} \left \{{{\vartheta _{ij}}}\right \}}\right)^{q}} \\&+\!\left({\!\frac {e^{{\left({\!\begin{array}{cc}{max}&{max}\\ {j}&{i}\end{array}\left \{{{\mu _{ij}}}\right \}\!}\right)^{q}}-{\left({\begin{array}{cc}{min}&{min}\\ {j}&{i}\end{array} \left \{{{\vartheta _{ij}}}\right \}}\right)^{q}}}}{{e^{{\left({\!\begin{array}{cc}{max}&{max}\\ {j}&{i}\end{array} \left \{{{\mu _{ij}}}\right \}}\right)^{q}}\!-\!{\left({\!\begin{array}{cc}{min}&{min}\\ {j}&{i}\end{array} \left \{{{\vartheta _{ij}}}\right \}\!}\right)^{q}}}}\!+\!1}\!-\!\frac {1}{2}\!\!}\right){{\pi _{{\aleph _{\mathsf {e}_{ij}}}^{+}}}^{q}} \\=&S({\aleph _{max}}) \\\Rightarrow&S({\delta }){\leq }S({\aleph _{max}})\end{align*}
\begin{align*}&\hspace {-1pc}S({\delta }) \\=&{{\mu _{\delta }}^{q}}-{{\vartheta _{\delta }}^{q}}{\,\,+\,\,} \left({\frac {e^{{{\mu _{\delta }}^{q}}-{{\vartheta _{\delta }}^{q}}}}{{e^{{{\mu _{\delta }}^{q}} -{{\vartheta _{\delta }}^{q}}}}+1}-\,\,\frac {1}{2}}\right){{\pi _{\delta }}^{q}} \\{\geq }&{\left({\begin{array}{cc}{min}&{min}\\ {j}&{i}\end{array}\left \{{{\mu _{ij}}}\right \}}\right)^{q}} -{\left({\begin{array}{cc}{max}&{max}\\ {j}&{i}\end{array} \left \{{{\vartheta _{ij}}}\right \}}\right)^{q}} \\&+\! \left({\!\!\frac {e^{{\left({\!\begin{array}{cc}{min}&{min}\\ {j}&{i}\end{array}\left \{{{\mu _{ij}}}\right \}\!}\right)^{q}} -{\left({\!\begin{array}{cc}{max}&{max}\\ {j}&{i}\end{array}\left \{{{\vartheta _{ij}}}\right \}\!}\right)^{q}}}} {{e^{{\left({\begin{array}{cc}{min}&{min}\\ {j}&{i}\end{array}\left \{{{\mu _{ij}}}\right \}}\right)^{q}} -{\left({\begin{array}{cc}{max}&{max}\\ {j}&{i}\end{array}\left \{{{\vartheta _{ij}}}\right \}}\right)^{q}}}}\!\!+\!\!1} \!-\!\frac {1}{2}\!\!}\right){{\pi _{{\aleph _{\mathsf {e}_{ij}}}^{-}}}^{q}} \\=&S({\aleph _{min}}) \\\Rightarrow&S({\delta }){\geq }S({\aleph _{min}})\end{align*}
If \begin{equation*}~{\aleph _{min}} < q-ROFSEWG~\left({{\aleph _{\mathsf {e}_{11}}},~{\aleph _{\mathsf {e}_{12}}},\ldots,{\aleph _{\mathsf {e}_{nm}}}}\right) < {\aleph _{max}}{.}\end{equation*}
If \begin{align*}&\hspace {-1pc}{{\mu _{\delta }}^{q}}-{{\vartheta _{\delta }}^{q}}{\,\,+\,\,}\left({\frac {e^{{{\mu _{\delta }}^{q}} -{{\vartheta _{\delta }}^{q}}}}{{e^{{{\mu _{\delta }}^{q}}-{{\vartheta _{\delta }}^{q}}}}+1}-\,\,\frac {1}{2}}\right) {{\pi _{\delta }}^{q}} \\=&{\left({\begin{array}{cc}{max}&{max}\\ {j}&{i}\end{array}\left \{{{\mu _{ij}}}\right \}}\right)^{q}}-{\left({\begin{array}{cc}{min}&{min}\\ {j}&{i}\end{array} \left \{{{\vartheta _{ij}}}\right \}}\right)^{q}} \\&+\!\left({\!\!\frac {e^{{\left({\!\begin{array}{cc}{max}&{max}\\ {j}&{i}\end{array}\left \{{{\mu _{ij}}}\right \}\! }\right)^{q}}-{\left({\!\begin{array}{cc}{min}&{min}\\ {j}&{i}\end{array}\left \{{{\vartheta _{ij}}}\right \} \!}\right)^{q}}}}{{e^{{\left({\!\begin{array}{cc}{max}&{max}\\ {j}&{i}\end{array}\left \{{{\mu _{ij}}}\right \}\!}\right)^{q}}-{\left({\begin{array}{cc}{min}&{min}\\ {j}&{i}\end{array} \left \{{{\vartheta _{ij}}}\right \}}\right)^{q}}}}\!+\!1}\!-\!\frac {1}{2}\!\!}\right){{\pi _{{\aleph _{\mathsf {e}_{ij}}}^{+}}}^{q}}\end{align*}
\begin{equation*}~q-ROFSEWG~\left({{\aleph _{\mathsf {e}_{11}}},~{\aleph _{\mathsf {e}_{12}}},\ldots,{\aleph _{\mathsf {e}_{nm}}}}\right)={\aleph _{max}}{.}\end{equation*}
\begin{align*}&\hspace {-1pc}{{\mu _{\delta }}^{q}}-{{\vartheta _{\delta }}^{q}}{\,\,+\,\,}\left({\frac {e^{{{\mu _{\delta }}^{q}} -{{\vartheta _{\delta }}^{q}}}}{{e^{{{\mu _{\delta }}^{q}}-{{\vartheta _{\delta }}^{q}}}}+1}- \frac {1}{2}}\right){{\pi _{\delta }}^{q}} \\=&{\left({\begin{array}{cc}{min}&{min}\\ {j}&{i}\end{array}\left \{{{\mu _{ij}}}\right \}}\right)^{q}} -{\left({\begin{array}{cc}{max}&{max}\\ {j}&{i}\end{array}\left \{{{\vartheta _{ij}}}\right \}}\right)^{q}} \\&+\left({\!\!\frac {e^{{\left({\!\begin{array}{cc}{min}&{min}\\ {j}&{i}\end{array}\left \{{{\mu _{ij}} }\right \}\!}\right)^{q}}-{\left({\!\begin{array}{cc}{max}&{max}\\ {j}&{i}\end{array} \left \{{{\vartheta _{ij}}}\right \}\!}\right)^{q}}}}{{e^{{\left({\!\begin{array}{cc}{min}&{min}\\ {j}&{i} \end{array}\left \{{{\mu _{ij}}}\right \}}\right)^{q}}-{\left({\!\begin{array}{cc}{max}&{max}\\ {j}&{i}\end{array} \left \{{{\vartheta _{ij}}}\right \}\!}\right)^{q}}}}\!+\!1}\!-\!\frac {1}{2}\!\!}\right){{\pi _{{\aleph _{\mathsf {e}_{ij}}}^{+}}}^{q}}\end{align*}
\begin{equation*}~q-ROFSEWG~\left({{\aleph _{\mathsf {e}_{11}}},~{\aleph _{\mathsf {e}_{12}}},\ldots,{\aleph _{\mathsf {e}_{nm}}}}\right)={\aleph _{min}}{.}\end{equation*}
\begin{equation*}~{\aleph _{min}}{\leq }q-ROFSEWG~\left({{\aleph _{\mathsf {e}_{11}}},~{\aleph _{\mathsf {e}_{12}}},\ldots,{\aleph _{\mathsf {e}_{nm}}}}\right){\leq }{\aleph _{max}}{.}\end{equation*}
3) Homogeneity
Prove that \begin{align*}&\hspace {-2pc}\mathrm {q-ROFSEWG~}\left({\alpha {\aleph _{\mathsf {e}_{11}}},~{\alpha }{\aleph _{\mathsf {e}_{12}}}\ldots,~{\alpha }{\aleph _{\mathsf {e}_{\mathrm {nm}}}}}\right) \\=&\mathrm {\alpha q-}ROFSEWG~\left({{\aleph _{\mathsf {e}_{11}}},~{\aleph _{\mathsf {e}_{12}}},\ldots,~{\aleph _{\mathsf {e}_{nm}}}}\right)~{\alpha }>0.\end{align*}
Proof:
Let \begin{equation*}{\aleph _{\mathsf {e}_{ij}}}=\left \langle{ \frac {\sqrt [{q}]{2\left({{\mu ^{q}}}\right)^{\partial }}}{\sqrt [{q}]{{\left({2-{\mu ^{q}}}\right)^{\partial }}+{\left({{\mu ^{q}}}\right)^{\partial }}}},~\frac {\sqrt [{q}]{{\left({1+{\vartheta ^{q}}}\right)^{\partial }}-{\left({1-{\vartheta ^{q}}}\right)^{\partial }}}}{\sqrt [{q}]{{\left({1+{\vartheta ^{q}}}\right)^{\partial }}+{\left({1-{\vartheta ^{q}}}\right)^{\partial }}}}}\right \rangle\end{equation*}
Einstein Ordered Geometric Aggregation Operator for Q- Rung ORTHOPAIR Fuzzy Soft Numbers
This section presents q-ROFSEOWG operators based on Einstein’s operational laws for q-ROFSNs.
1) Definition
Let \begin{align*}&\hspace {-2pc}q-ROFSEOWG~\left({{\aleph _{\mathsf {e}_{11}}},~{\aleph _{\mathsf {e}_{12}}},\ldots,{\aleph _{\mathsf {e}_{nm}}}}\right) \\=&{\otimes _{j=1}^{m}}{\left({{\otimes _{i=1}^{n}}{\left({{\aleph _{\mathsf {e}_{\mathfrak {r}(i)\mathfrak {s}(j)}}}}\right)^{\Omega _{i}}}}\right)^{\gamma _{j}}}{~}\tag{10}\end{align*}
2) Theorem
Let

Proof:
Using mathematical induction
For
For
So, equation 11 hold for
Assume for
Now, for
So, it is true for
3) Example
Let \begin{align*}~\left({\aleph,~{\mathfrak {L}^{\prime }}}\right)=\left \lceil{ {\begin{array}{cccc}\left({0.5,~0.7}\right)& \left({0.5,~0.2}\right)& \left({0.4,~0.6}\right)& (0.4,~0.1)\\ \left({0.5,~0.4}\right)& \left({0.6,~0.3}\right)& \left({0.5,~0.3}\right)& (0.6,~0.5)\\ \left({0.3,~0.5}\right)& \left({0.2,~0.3}\right)& \left({0.8,~0.3}\right)& (0.7,~0.9)\end{array}}}\right \rceil {}\end{align*}
\begin{align*}\left({\aleph,~{\mathfrak {L}^{\prime }}}\right)=\,\,\left \lceil{ {\begin{array}{cccc}\left({0.8,~0.3}\right)& \left({0.6,~0.3}\right)& \left({0.5,~0.2}\right)& (0.5,~0.3)\\ \left({0.6,~0.5}\right)& \left({0.2,~0.3}\right)& \left({0.3,~0.5}\right)& (0.5,~0.7)\\ \left({0.5,~0.4}\right)& \left({0.1,~0.4}\right)& \left({0.4,~0.6}\right)& (0.7,~0.9)\end{array}}}\right \rceil\end{align*}
4) Remark
If
and{{\mu _{ij}}^{q}}+\, {{\vartheta _{ij}}^{q}}{\leq }1\,{} . Then, the q-ROFSEOWG operator is condensed to the PFSEOWG operator [34].q=2 If
and{{\mu _{ij}}^{q}}+\, {{\vartheta _{ij}}^{q}}{\leq }1\,{} . Then, the q-ROFSEOWG operator is condensed to the IFSEOWG operator [3].q=1
Now, we will discuss the desired properties for the q-ROFSEOWG operator such as follows:
A. Properties of Q-ROFSEOWG Operator
1) Idempotency
If \begin{equation*} q-ROFSEOWG~\left({{\aleph _{\mathsf {e}_{11}}},~{\aleph _{\mathsf {e}_{12}}},\ldots,{\aleph _{\mathsf {e}_{nm}}}}\right)=\aleph\end{equation*}
So, \begin{equation*} {=}\left \langle{ {\mu _{ij}}}\right.~,~\left.{{\vartheta _{ij}}}\right \rangle {\,\,=\,\,}\aleph {.}\end{equation*}
2) Boundedness
If \begin{equation*} {\aleph _{min}} {\leq } q-ROFSEOWG~\left({{\aleph _{\mathsf {e}_{11}}},~{\aleph _{\mathsf {e}_{12}}},\ldots,{\aleph _{\mathsf {e}_{nm}}}}\right) {\leq } {\aleph _{max}}.\end{equation*}
Proof:
Let \begin{align*} \frac {d}{dx}\left({f(x)}\right)=&-\frac {\left [{\frac {q}{x}+\frac {q}{x^{1 +q}}(2-{x^{q}})}\right]\left [{\frac {1}{\theta ^{q}}{\left({2-{x^{q}}}\right)^{-1 +\frac {1}{q}}}}\right]}{q}\frac {-2}{x^{3}} \\ < &0.\end{align*}
\begin{equation*} f\left({{\mu _{max}}}\right)~{\leq }~f\left({{\mu _{\mathfrak {r}(i)\mathfrak {s}(j)}}}\right)~{\leq }~f\left({{\mu _{min}}}\right).\end{equation*}
\begin{equation*} \sqrt [{q}]{\frac {2-{\mu _{max}^{q}}}{\mu _{max}^{q}}}~{\leq }\sqrt [{q}]{\frac {2-{\mu _{\mathfrak {r}(i) \mathfrak {s}(j)}^{q}}}{\mu _{\mathfrak {r}(i)\mathfrak {s}(j)}^{q}}}~{\leq }\sqrt [{q}]{\frac {2-{\mu _{min}^{q}}}{\mu _{min}^{q}}}.\end{equation*}
Again, let
Then, \begin{align*} \frac {d}{dy}\left({g(y)}\right)=&-\frac {\left [{\frac {q}{y}+\frac {q}{y^{1 +q}}(2-{y^{q}})}\right]\left [{\frac {1}{\theta ^{q}}{\left({2-{y^{q}}}\right)^{-1 +\frac {1}{q}}}}\right]}{q}\frac {-2}{y^{3}} \\ < &0.\end{align*}
\begin{equation*}~\Rightarrow \sqrt [{q}]{\frac {1-{\vartheta _{max}^{q}}}{1+{\vartheta _{max}^{q}}}}{\leq }\sqrt [{q}]{\frac {1-{\vartheta _{\mathfrak {r}(i)\mathfrak {s}(j)}^{q}}}{1+{\vartheta _{\mathfrak {r}(i)\mathfrak {s}(j)}^{q}}}}~{\leq }~\sqrt [{q}]{\frac {1-{\vartheta _{min}^{q}}}{1+{\vartheta _{min}^{q}}}}{,}\end{equation*}
Let \begin{align*}&\hspace {-1pc}S({\delta }) \\=&{{\mu _{\delta }}^{q}}-{{\vartheta _{\delta }}^{q}}{\,\,+\,\,} \left({\frac {e^{{{\mu _{\delta }}^{q}}-{{\vartheta _{\delta }}^{q}}}}{{e^{{{\mu _{\delta }}^{q}}- {{\vartheta _{\delta }}^{q}}}}+1}-\,\,\frac {1}{2}}\right){{\pi _{\delta }}^{q}} \\{\leq }&{\left({\begin{array}{cc}{max}&{max}\\ {j}&{i}\end{array}\left \{{{\mu _{ij}}}\right \}}\right)^{q}}-{\left({\begin{array}{cc}{min}&{min}\\ {j}&{i}\end{array} \left \{{{\vartheta _{ij}}}\right \}}\right)^{q}} \\&+\left({\!\!\frac {e^{{\left({\!\begin{array}{cc}{max}&{max}\\ {j}&{i}\end{array}\left \{{{\mu _{ij}}}\right \}\! }\right)^{q}}\!-\!{\left({\!\begin{array}{cc}{min}&{min}\\ {j}&{i}\end{array} \left \{{{\vartheta _{ij}}}\right \}\!}\right)^{q}}}}{{e^{{\left({\!\begin{array}{cc}{max}&{max}\\ {j}&{i}\end{array}\left \{{{\mu _{ij}}}\right \}}\right)^{q}}-{\left({\begin{array}{cc}{min}&{min}\\ {j}&{i}\end{array} \left \{{{\vartheta _{ij}}}\right \}\!}\right)^{q}}}}\!\!+\!\!1}\!-\!\frac {1}{2}\!\!\!}\right){{\pi _{{\aleph _{\mathsf {e}_{ij}}}^{+}}}^{q}} \\=&S({\aleph _{max}}) \\\Rightarrow&S({\delta }){\leq }S({\aleph _{max}})\end{align*}
\begin{align*}&\hspace {-1pc}S({\delta }) \\=&{{\mu _{\delta }}^{q}}-{{\vartheta _{\delta }}^{q}}{\,\,+\,\,}\left({\frac {e^{{{\mu _{\delta }}^{q}} -{{\vartheta _{\delta }}^{q}}}}{{e^{{{\mu _{\delta }}^{q}}-{{\vartheta _{\delta }}^{q}}}}+1} -\,\,\frac {1}{2}}\right){{\pi _{\delta }}^{q}} \\{\geq }&{\left({\begin{array}{cc}{min}&{min}\\ {j}&{i}\end{array}\left \{{{\mu _{ij}}}\right \}}\right)^{q}}-{\left({\begin{array}{cc}{max}&{max}\\ {j}&{i}\end{array} \left \{{{\vartheta _{ij}}}\right \}}\right)^{q}} \\&+\!\left({\!\!\frac {e^{{\left({\begin{array}{cc}{min}&{min}\\ {j}&{i}\end{array} \left \{{{\mu _{ij}}}\right \}}\right)^{q}}-{\left({\!\begin{array}{cc}{max}&{max}\\ {j}&{i}\end{array} \left \{{{\vartheta _{ij}}}\right \}\!}\right)^{q}}}}{{e^{{\left({\!\begin{array}{cc}{min}&{min}\\ {j}&{i}\end{array} \left \{{{\mu _{ij}}}\right \}\!}\right)^{q}}\!-\!{\left({\!\begin{array}{cc}{max}&{max}\\ {j}&{i}\end{array} \left \{{{\vartheta _{ij}}}\right \}\!}\right)^{q}}}}+1}\!-\!\frac {1}{2}\!\!}\right){{\pi _{{\aleph _{\mathsf {e}_{ij}}}^{-}}}^{q}} \\=&S({\aleph _{min}}) \\\Rightarrow&S({\delta }){\geq }S({\aleph _{min}})\end{align*}
If \begin{equation*}~{\aleph _{min}} < q-ROFSEOWG~\left({{\aleph _{\mathsf {e}_{11}}},~{\aleph _{\mathsf {e}_{12}}},\ldots,{\aleph _{\mathsf {e}_{nm}}}}\right) < {\aleph _{max}}{.}\end{equation*}
\begin{align*}&\hspace {-1pc}{{\mu _{\delta }}^{q}}-{{\vartheta _{\delta }}^{q}}{\,\,+\,\,}\left({\frac {e^{{{\mu _{\delta }}^{q}} -{{\vartheta _{\delta }}^{q}}}}{{e^{{{\mu _{\delta }}^{q}}-{{\vartheta _{\delta }}^{q}}}}+1} -\,\,\frac {1}{2}}\right){{\pi _{\delta }}^{q}} \\=&{\left({\begin{array}{cc}{max}&{max}\\ {j}&{i}\end{array}\left \{{{\mu _{ij}}}\right \}}\right)^{q}}-{\left({\begin{array}{cc}{min}&{min}\\ {j}&{i}\end{array} \left \{{{\vartheta _{ij}}}\right \}}\right)^{q}} \\&+\left({\!\!\frac {e^{{\left({\!\begin{array}{cc}{max}&{max}\\ {j}&{i}\end{array} \left \{{{\mu _{ij}}}\right \}\!}\right)^{q}}-{\left({\begin{array}{cc}{min}&{min}\\ {j}&{i}\end{array} \left \{{{\vartheta _{ij}}}\right \}}\right)^{q}}}}{{e^{{\left({\!\begin{array}{cc}{max}&{max}\\ {j}&{i}\end{array} \left \{{{\mu _{ij}}}\right \}\!}\right)^{q}}-{\left({\!\begin{array}{cc}{min}&{min}\\ {j}&{i}\end{array} \left \{{{\vartheta _{ij}}}\right \}\!}\right)^{q}}}}\!+\!1}\!-\!\frac {1}{2}\!\!}\right){{\pi _{{\aleph _{\mathsf {e}_{ij}}}^{+}}}^{q}}\end{align*}
\begin{equation*}~q-ROFSEOWG~\left({{\aleph _{\mathsf {e}_{11}}},~{\aleph _{\mathsf {e}_{12}}},\ldots,{\aleph _{\mathsf {e}_{nm}}}}\right)={\aleph _{max}}{.}\end{equation*}
\begin{align*}&\hspace {-1pc}{{\mu _{\delta }}^{q}}-{{\vartheta _{\delta }}^{q}} {\,\,+\,\,}\left({\frac {e^{{{\mu _{\delta }}^{q}}-{{\vartheta _{\delta }}^{q}}}} {{e^{{{\mu _{\delta }}^{q}}-{{\vartheta _{\delta }}^{q}}}}+1}-\,\,\frac {1}{2}}\right){{\pi _{\delta }}^{q}} \\=&{\left({\begin{array}{cc}{min}&{min}\\ {j}&{i}\end{array}\left \{{{\mu _{ij}}}\right \}}\right)^{q}}-{\left({\begin{array}{cc}{max}&{max}\\ {j}&{i}\end{array} \left \{{{\vartheta _{ij}}}\right \}}\right)^{q}} \\&+\!\left({\!\!\frac {e^{{\left({\!\begin{array}{cc}{min}&{min}\\ {j}&{i}\end{array} \left \{{{\mu _{ij}}}\right \}\!}\right)^{q}}-{\left({\!\begin{array}{cc}{max}&{max}\\ {j}&{i}\end{array} \left \{{{\vartheta _{ij}}}\right \}\!}\right)^{q}}}}{{e^{{\left({\!\begin{array}{cc}{min}&{min}\\ {j}&{i}\end{array} \left \{{{\mu _{ij}}}\right \}\!}\right)^{q}}\!-\!{\left({\!\begin{array}{cc}{max}&{max}\\ {j}&{i}\end{array} \left \{{{\vartheta _{ij}}}\right \}\!}\right)^{q}}}}\!+\!1}\!-\!\frac {1}{2}\!\!}\right){{\pi _{{\aleph _{\mathsf {e}_{ij}}}^{+}}}^{q}}\end{align*}
\begin{equation*}~q-ROFSEOWG~\left({{\aleph _{\mathsf {e}_{11}}},~{\aleph _{\mathsf {e}_{12}}},\ldots,{\aleph _{\mathsf {e}_{nm}}}}\right)={\aleph _{min}}{.}\end{equation*}
\begin{equation*}~{\aleph _{min}}{\leq }q-ROFSEOWG~\left({{\aleph _{\mathsf {e}_{11}}},~{\aleph _{\mathsf {e}_{12}}},\ldots,{\aleph _{\mathsf {e}_{nm}}}}\right){\leq }{\aleph _{max}}{.}\end{equation*}
3) Homogeneity
Prove that
Proof:
Let \begin{equation*} {\aleph _{\mathsf {e}_{ij}}}=\left \langle{ \frac {\sqrt [{q}]{2\left({{\mu ^{q}}}\right)^{\partial }}}{\sqrt [{q}]{{\left({2-{\mu ^{q}}}\right)^{\partial }}+{\left({{\mu ^{q}}}\right)^{\partial }}}},~\frac {\sqrt [{q}]{{\left({1+{\vartheta ^{q}}}\right)^{\partial }}-{\left({1-{\vartheta ^{q}}}\right)^{\partial }}}}{\sqrt [{q}]{{\left({1+{\vartheta ^{q}}}\right)^{\partial }}+{\left({1-{\vartheta ^{q}}}\right)^{\partial }}}}}\right \rangle\end{equation*}
Multi-Criteria Decision-Making Approach for Q-ROFSEWG and Q-ROFSEOWG Operators
The subsequent section will build an MCDM method operating our established AOs.
A. Proposed MCDM Approach
Let
B. Algorithm for Q-ROFSEWG Operator
Step 1. Accumulate the specialist’s assessment information for each alternative to their compatible attributes and then build a decision matrix such as follows:\begin{align*}&\hspace {-2pc}{\left({{\mathcal {X} ^{(z)}} \mathcal {,~E} }\right)_{n\times m}} \\=&{\begin{array}{c}\\ {\mathcal {Q} _{1}}\\ {\mathcal {Q} _{2}}\\ \vdots \\ {\mathcal {Q} _{n}}\end{array}}\left({{\begin{array}{cccc}\\ \left({{\mu _{11}^{(z)}},~{\vartheta _{11}^{(z)}}}\right)& \left({{\mu _{12}^{(z)}},~{\vartheta _{12}^{(z)}}}\right)& \cdots & \left({{\mu _{1 m}^{(z)}},~{\vartheta _{1 m}^{(z)}}}\right)\\ \left({{\mu _{21}^{(z)}},~{\vartheta _{21}^{(z)}}}\right)& \left({{\mu _{22}^{(z)}},~{\vartheta _{22}^{(z)}}}\right)& \cdots & \left({{\mu _{2 m}^{(z)}},~{\vartheta _{2 m}^{(z)}}}\right)\\ \vdots & \vdots & \vdots & \vdots \\ \left({{\mu _{n1}^{(z)}},~{\vartheta _{n1}^{(z)}}}\right)& \left({{\mu _{n2}^{(z)}},~{\vartheta _{n2}^{(z)}}}\right)& \cdots & \left({{\mu _{nm}^{(z)}},~{\vartheta _{nm}^{(z)}}}\right)\end{array}}}\right)\end{align*}
Step 2. Convert the cost type parameters to benefit type using the normalization rule.\begin{align*}~{ {\boldsymbol {h}}_{ij}^{(z)}}=\begin{cases}{\aleph _{\mathsf {e}_{ij}}^{c}}=\left({{\vartheta _{ij}^{(z)}},~{\mu _{ij}^{(z)}}}\right);&\mathrm {cost~type~parameter}\\ {\aleph _{\mathsf {e}_{ij}}}=\left({{\mu _{ij}^{(z)}},{\vartheta _{ij}^{(z)}}}\right);&\mathrm {benefit~type~parameter} \end{cases}\end{align*}
Step 3. Conquered a communal decision matrix
Step 4. Calculate the ranking of the alternatives via the score function.
Step 5. Indicate the extraordinary alternative with a supreme score value
Step 6. Detect the position of the substitutes.
C. Algorithm for Q-ROFSEOWG Operator
Step 1. Accumulate the specialist’s assessment facts for each alternative to their compatible parameters:\begin{align*}&\hspace {-2pc}{\left({{\mathcal {X} ^{(z)}} \mathcal {,~E} }\right)_{n\times m}} \\=&{\begin{array}{c}\\ {\mathcal {Q} _{1}}\\ {\mathcal {Q} _{2}}\\ \vdots \\ {\mathcal {Q} _{n}}\end{array}}\left({{\begin{array}{cccc}\\ \left({{\mu _{11}^{(z)}},~{\vartheta _{11}^{(z)}}}\right)& \left({{\mu _{12}^{(z)}},~{\vartheta _{12}^{(z)}}}\right)& \cdots & \left({{\mu _{1 m}^{(z)}},~{\vartheta _{1 m}^{(z)}}}\right)\\ \left({{\mu _{21}^{(z)}},~{\vartheta _{21}^{(z)}}}\right)& \left({{\mu _{22}^{(z)}},~{\vartheta _{22}^{(z)}}}\right)& \cdots & \left({{\mu _{2 m}^{(z)}},~{\vartheta _{2 m}^{(z)}}}\right)\\ \vdots & \vdots & \vdots & \vdots \\ \left({{\mu _{n1}^{(z)}},~{\vartheta _{n1}^{(z)}}}\right)& \left({{\mu _{n2}^{(z)}},~{\vartheta _{n2}^{(z)}}}\right)& \cdots & \left({{\mu _{nm}^{(z)}},~{\vartheta _{nm}^{(z)}}}\right)\end{array}}}\right)\end{align*}
Step 2. Calculate the ordered matrix via the score function.
Step 3. Convert the cost type parameters to benefit type using the normalization rule.\begin{align*}~{ {\boldsymbol {h}}_{ij}^{(z)}}{\,\,=\,\,}\begin{cases}{\aleph _{\mathsf {e}_{ij}}^{c}}=\left({{\vartheta _{ij}^{(z)}},~{\mu _{ij}^{(z)}}}\right);&\mathrm {cost~type~parameter}\\ {\aleph _{\mathsf {e}_{ij}}}=\left({{\mu _{ij}^{(z)}},~{\vartheta _{ij}^{(z)}}}\right);&\mathrm {benefit~type~parameter} \end{cases}\end{align*}
Step 4. Conquered a communal decision matrix
Step 5. Calculate the alternatives score values using the score function.
Step 6. Indicate the most suitable alternative with a supreme score value
Step 7. Detect the rank of the substitutes.
Application of Proposed MCDM Approach and Comparative Studies
In this section, an inarticulate example to demonstrate the productivity and accuracy of the model established through q-ROFSS facts [37], [39]. Furthermore, we present the superiority and comparative analysis of the following: a prearranged method with prevailing approaches.
A. Application of the Developed MCDM Approach
Suppose
B. Q-ROFSEWG Operator
Step-1: The specialists examine the environs and stretch their predilections in q-ROFSN. The score values for each alternative are given in Table 1–Table 4.
Step 2. All attributes are of the same type. So, no need to normalize.
Step 3. q-ROFSEWG operator can dignify specialists’ assessment of each alternative as follows:
For \begin{align*}~{\mathcal {L} _{1}}=&\left \langle{ \left.{0.2107,0.7135}\right \rangle }\right.{,~}{\mathcal {L} _{2}}{\,\,=\,\,}\left \langle{ \begin{matrix}\left.{\begin{matrix}0.1693,\end{matrix}0.7283}\right \rangle \end{matrix}}\right.{,~} \\ { \mathcal {L} _{3}}=&\left.{\left \langle{ \begin{matrix}0.1619\end{matrix},0.7314}\right.}\right \rangle {,~\text {and}~}{\mathcal {L} _{4}}{=\,\,}\left.{\left \langle{ 0.1602,~0.7329}\right.}\right \rangle\end{align*}
Step 4. Calculate the score values using Equation
Step 5.
Step 6. Substitutes ranking using q-ROFSEWG operator given as follows:
C. For Q-ROFSEOWG Operator
Step 1. Same as above.
Step 2. Acquire the ordered decision matrices given in the following Table 5–Table 8.
Step 3. All parameters are of the same type. So, no need to normalize.
Step 4. q-ROFSEOWG operator can dignify experts’ assessment of each patient as follows:
For \begin{align*}~{\mathcal {L} _{1}}=&\left \langle{ \left.{0.2476,~0.7366}\right \rangle }\right.{,~}{\mathcal {L} _{2}}{\,\,=\,\,}\left \langle{ \left.{\begin{matrix}0.2109,~0.7397\end{matrix}}\right \rangle }\right.{,~} \\ {\mathcal {L} _{3}}=&\left \langle{ \left.{\begin{matrix}0.2085,~0.7638\end{matrix}}\right \rangle }\right.{,~\text {and}~}{\mathcal {L} _{4}}{=\,\,}\left \langle{ \left.{\begin{matrix}0.1856,~0.7952\end{matrix}}\right \rangle }\right.\end{align*}
Step 5. Calculate the score values using Equation
Step 6.
Step 7. Alternatives ranking by q-ROFSEOWG operator given as follows:\begin{equation*}~\mathcal {S} ({\mathcal {L} _{3}})> \mathcal {S} ({\mathcal {L} _{4}})> \mathcal {S} ({\mathcal {L} _{2}})> \mathcal {S} ({\mathcal {L} _{1}}).\end{equation*}
\begin{equation*}{\mathcal {X} _{3}}>{\mathcal {X} _{4}}>{\mathcal {X} _{2}}>{\mathcal {X} _{1}}{.~}\end{equation*}
We will be capable of distinguishing variations in the assessments of the two operators. These distinctions are owing to precise conformation methodologies formed by distinct AOs. However, the best and poorest optimal are the same in both cases. The consequences condense the endorsed operators’ cruelty, ability, efficacy, and stability.
D. Benefits and Superiority of the Proposed Method
The projected method is capable and operable; we present a progressive approach under the q-ROFSS background through q-ROFSEWG or q-ROFSEOWG operators. Our anticipated model is more brilliant than predominant structures and can convey the most subtle values of MCDM obstacles. The integrated model is multipurpose and familiar with regulating emergent variations, involvement, and efficiency. Different replicas have specific classification processes, so there are direct modifications among the anticipated method’s statuses to be feasible based on their meditations. From this systematic investigation and assessment, we now determine that the consequences of the prevailing methodology are impulsively associated with the amalgam structure. Moreover, owing to some privileged environments, several fusion organizations of fuzzy set, IFSS, and PFSS have to convert infrequent for q-ROFSS. It is a modest technique of syndicating imperfect and ambiguous facts in the DM method. Information around the purpose can be prepared more rigorously and cogently articulated. It is an ascetically modest implement to assortment imprecise and anxious information in the DM method. So, our scheduled technique will be more capable, substantial, superior, and better than several diversified configurations of fuzzy sets. Table 10 offers a distinctive investigation of the projected methodology with some general studies.
E. Comparative Analysis
To validate the ascendency and influence of the intentional methodology, a reasonable study has been offered between the settled technique and some prevalent mechanisms, based on some AOs. If we contemplate the MD = 0.8 and NMD= 0.5, then
It is also suitable for furious undetermined and incorrect data in the DM practice. The benefit of the intended technique and allied processes over existing methodologies is to escape interpretations based on offensive reasons. So, it is an appropriate tool for merging inaccurate and unstipulated specifics in the DM method. The graphical demonstration of comparative studies is prearranged in the succeeding Figure 1.
Conclusion
Decision-making is a pre-planned process of sorting and selecting logical options from among many substitutes. DM is a complex procedure since it can modify from one extract to another. Therefore, it is crucial to identify the characteristics and limitations of the substitutes. Furthermore, DM is a healthy method that increases the probability of identifying the best appropriate alternate. It is essential to differentiate how considerable precise contextual information decision-makers need. The most effective DM method is to focus entirely on your objectives. Molodtsov combines parametric tools with standard sets to study significant SS samples. SS concept does not receive convolution and is an exceptional scientific tool for parameterizing uncertain relationships. The main purpose of this research is to present some new operating rules for q-ROFSS. Einstein geometric AOs have been planned based on the offered concept: q-ROFSEWG and q-ROFSEOWG operators. Furthermore, some basic features of the proposed operator are also discussed. The proposed model poses a medicinal DM delinquent in the q-ROFSS configuration. Next, we use some prevailing techniques to demonstrate the effectiveness of the settled scheme and identify the impact and advantages of existing methods for general research through characterization analysis. The advantage of default concepts is that they can address the complexity of reality by consuming their parametric properties. Therefore, the proven model can resolve the delinquency of DM but not other prevailing operators in the q-ROFSS setting. Future studies will focus on existing DM tools used by several other operators as part of the q-ROFSS. The advocated notion can be pragmatic to various real-life complications comprising the medical profession, robotics, artificial intelligence, pattern recognition, economics, etc. Also, numerous other structures can be established and projected, such as Einstein AOs, Bonferroni mean AOs and dombi AOs, etc., with their DM techniques.
ACKNOWLEDGMENT
This work was supported by the Deanship of Scientific Research at King Khalid University through Large Groups Project under Grant R.G.P. 2/51/43.