Abstract:
In realistic applications of object search, robots will need to locate target objects in complex environments while coping with unreliable sensors, especially for small o...Show MoreMetadata
Abstract:
In realistic applications of object search, robots will need to locate target objects in complex environments while coping with unreliable sensors, especially for small or hard-to-detect objects. In such settings, correlational information can be valuable for planning efficiently. Previous approaches that consider correlational information typically resort to ad-hoc, greedy search strategies. We introduce the Correlational Object Search POMDP (COS-POMDP), which models correlations while preserving optimal solutions with a reduced state space. We propose a hierarchical planning algorithm to scale up COS-POMDPs for practical domains. Our evaluation, conducted with the AI2-THOR household simulator and the YOLOv5 object detector, shows that our method finds objects more successfully and efficiently compared to baselines, particularly for hard-to-detect objects such as srub brush and remote control.
Date of Conference: 23-27 May 2022
Date Added to IEEE Xplore: 12 July 2022
ISBN Information: