Abstract:
Highly accurate and robust relocalization or localization initialization ability is of great importance for autonomous vehicles (AVs). Traditional GNSS-based methods are ...Show MoreMetadata
Abstract:
Highly accurate and robust relocalization or localization initialization ability is of great importance for autonomous vehicles (AVs). Traditional GNSS-based methods are not reliable enough in occlusion and multipath conditions. In this paper we propose a novel long-term semantic relocalization algorithm based on HD map and semantic features which are compact in representation. Semantic features appear widely on urban roads, and are robust to illumination, weather, view-point and appearance changes. Repeated structures, missed and false detections make data association (DA) highly ambiguous. To this end, a robust semantic feature matching method based on a new local semantic descriptor which encodes the spatial and normal relationship between semantic features is performed. Further, we introduce an accurate, efficient, yet simple outlier removal method which works by assessing the local and global geometric consistencies and temporal consistency of semantic matching pairs. The experimental results on our urban dataset demonstrate that our approach performs better in accuracy and robustness compared with the current state-of-the-art methods.
Date of Conference: 23-27 May 2022
Date Added to IEEE Xplore: 12 July 2022
ISBN Information:
Keywords assist with retrieval of results and provide a means to discovering other relevant content. Learn more.
- IEEE Keywords
- Index Terms
- Autonomous Vehicles ,
- Robust Method ,
- Robust Features ,
- Semantic Features ,
- Feature Matching ,
- Matched Pairs ,
- Outlier Removal ,
- Urban Road ,
- Repeat Structure ,
- Local Descriptors ,
- Semantic Matching ,
- Geometric Consistency ,
- Normal Vector ,
- Point Cloud ,
- Global Map ,
- Local Map ,
- Set Threshold ,
- Traffic Light ,
- Pose Estimation ,
- Maximum A Posteriori ,
- Vertex Degree ,
- Vision-based Methods ,
- Long-term Scenarios ,
- Global Descriptors ,
- Relative Angle ,
- Road Markings ,
- Matching Accuracy ,
- Similar Scenes ,
- Histogram Statistics
Keywords assist with retrieval of results and provide a means to discovering other relevant content. Learn more.
- IEEE Keywords
- Index Terms
- Autonomous Vehicles ,
- Robust Method ,
- Robust Features ,
- Semantic Features ,
- Feature Matching ,
- Matched Pairs ,
- Outlier Removal ,
- Urban Road ,
- Repeat Structure ,
- Local Descriptors ,
- Semantic Matching ,
- Geometric Consistency ,
- Normal Vector ,
- Point Cloud ,
- Global Map ,
- Local Map ,
- Set Threshold ,
- Traffic Light ,
- Pose Estimation ,
- Maximum A Posteriori ,
- Vertex Degree ,
- Vision-based Methods ,
- Long-term Scenarios ,
- Global Descriptors ,
- Relative Angle ,
- Road Markings ,
- Matching Accuracy ,
- Similar Scenes ,
- Histogram Statistics