Abstract:
For a long time, most discrete accelerators have been attached to host systems using various generations of the PCI Express interface. However, with its lack of support f...Show MoreMetadata
Abstract:
For a long time, most discrete accelerators have been attached to host systems using various generations of the PCI Express interface. However, with its lack of support for coherency between accelerator and host caches, fine-grained interactions require frequent cache-flushes, or even the use of inefficient uncached memory regions. The Cache Coherent Interconnect for Accelerators (CCIX) was the first multi-vendor standard for enabling cache-coherent host-accelerator attachments, and already is indicative of the capabilities of upcoming standards such as Compute Express Link (CXL). In our work, we compare-and-contrast the use of CCIX with PCIe when interfacing an ARM-based host with two generations of CCIX-enabled FPGAs. We provide both low-level throughput and latency measurements for accesses and address translation, as well as examine an application-level use-case of using CCIX for fine-grained synchronization in an FPGA-accelerated database system. We can show that especially smaller reads from the FPGA to the host can benefit from CCIX by having roughly 33% shorter latency than PCIe. Small writes to the host have a latency roughly 32% higher than PCIe, though, since they carry a higher coherency overhead. For the database use-case, the use of CCIX allowed to maintain a constant synchronization latency even with heavy host-FPGA parallelism.
Published in: 2022 IEEE 30th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)
Date of Conference: 15-18 May 2022
Date Added to IEEE Xplore: 03 June 2022
ISBN Information: