Extension of the Generic Multi-Frequency Modelling Method for Type 3 Wind Turbines | IEEE Journals & Magazine | IEEE Xplore

Extension of the Generic Multi-Frequency Modelling Method for Type 3 Wind Turbines


Abstract:

Reflecting potential non-linearities of converter-based systems, especially frequency and sequence couplings, is an ongoing challenge for linearized multi-frequency model...Show More

Abstract:

Reflecting potential non-linearities of converter-based systems, especially frequency and sequence couplings, is an ongoing challenge for linearized multi-frequency models. Besides, design details are required to develop such models, which either are the intellectual property of manufacturers or require experimental tests. The generic multi-frequency modelling method has been proposed to fill this gap; however, it is only developed for converter-connected systems, e.g., Type 4 Wind Turbines (WT). This paper proposes to extend the application of the generic multi-frequency modelling method for Type 3 WTs. In this way, a theory for patterns of the couplings in Type 3 WTs is proposed. Accordingly, a group of emissions and couplings are Rotor-Speed-Dependent (RSD). The RSD emissions and couplings are particular characteristics of Type 3 WTs, which should be addressed in the generic multi-frequency models. The proposed theory is verified by unique-worldwide experimental perturbation tests on a 2 MVA Type 3 WT using a 7 MVA grid emulator. Accordingly, a limited number of RSD couplings and emissions are observed in the test results, mainly in low frequencies (below 1 kHz). Therefore, addressing the RSD couplings is practical and important to extend the generic multi-frequency modelling for Type 3 WTs.
Published in: IEEE Transactions on Energy Conversion ( Volume: 37, Issue: 3, September 2022)
Page(s): 1875 - 1884
Date of Publication: 11 April 2022

ISSN Information:

Funding Agency:


References

References is not available for this document.