Abstract:
We propose GNN-Surrogate, a graph neural network-based surrogate model to explore the parameter space of ocean climate simulations. Parameter space exploration is importa...Show MoreMetadata
Abstract:
We propose GNN-Surrogate, a graph neural network-based surrogate model to explore the parameter space of ocean climate simulations. Parameter space exploration is important for domain scientists to understand the influence of input parameters (e.g., wind stress) on the simulation output (e.g., temperature). The exploration requires scientists to exhaust the complicated parameter space by running a batch of computationally expensive simulations. Our approach improves the efficiency of parameter space exploration with a surrogate model that predicts the simulation outputs accurately and efficiently. Specifically, GNN-Surrogate predicts the output field with given simulation parameters so scientists can explore the simulation parameter space with visualizations from user-specified visual mappings. Moreover, our graph-based techniques are designed for unstructured meshes, making the exploration of simulation outputs on irregular grids efficient. For efficient training, we generate hierarchical graphs and use adaptive resolutions. We give quantitative and qualitative evaluations on the MPAS-Ocean simulation to demonstrate the effectiveness and efficiency of GNN-Surrogate. Source code is publicly available at https://github.com/trainsn/GNN-Surrogate.
Published in: IEEE Transactions on Visualization and Computer Graphics ( Volume: 28, Issue: 6, June 2022)
Funding Agency:
Keywords assist with retrieval of results and provide a means to discovering other relevant content. Learn more.
- IEEE Keywords
- Index Terms
- Parameter Space ,
- Space Exploration ,
- Graph Neural Networks ,
- Hierarchical Graph ,
- Ocean Simulations ,
- Alternative Models ,
- Input Parameters ,
- Simulation Parameters ,
- Visual Map ,
- Unstructured Mesh ,
- Feature Maps ,
- Convolution Operation ,
- Radial Basis Function ,
- Peak Signal-to-noise Ratio ,
- Unstructured Data ,
- Ocean Temperature ,
- Ensemble Members ,
- Graph Convolution ,
- Inverse Distance Weighting ,
- Visual Parameters ,
- Horizontal Edges ,
- Unstructured Grids ,
- Horizontal Layers ,
- Geographical Relationships ,
- Earth Mover’s Distance ,
- Graph Preparation ,
- Structural Similarity Index Measure ,
- Vertical Cross-section ,
- Edge Attributes ,
- Up-sampling Operation
- Author Keywords
Keywords assist with retrieval of results and provide a means to discovering other relevant content. Learn more.
- IEEE Keywords
- Index Terms
- Parameter Space ,
- Space Exploration ,
- Graph Neural Networks ,
- Hierarchical Graph ,
- Ocean Simulations ,
- Alternative Models ,
- Input Parameters ,
- Simulation Parameters ,
- Visual Map ,
- Unstructured Mesh ,
- Feature Maps ,
- Convolution Operation ,
- Radial Basis Function ,
- Peak Signal-to-noise Ratio ,
- Unstructured Data ,
- Ocean Temperature ,
- Ensemble Members ,
- Graph Convolution ,
- Inverse Distance Weighting ,
- Visual Parameters ,
- Horizontal Edges ,
- Unstructured Grids ,
- Horizontal Layers ,
- Geographical Relationships ,
- Earth Mover’s Distance ,
- Graph Preparation ,
- Structural Similarity Index Measure ,
- Vertical Cross-section ,
- Edge Attributes ,
- Up-sampling Operation
- Author Keywords