Loading [MathJax]/extensions/MathMenu.js
Security Enhancement in Coherent OFDM Optical Transmission With Chaotic Three-Dimensional Constellation Scrambling | IEEE Journals & Magazine | IEEE Xplore

Security Enhancement in Coherent OFDM Optical Transmission With Chaotic Three-Dimensional Constellation Scrambling


Abstract:

In this paper, we propose and experimentally demonstrate a novel hybrid chaos-based three-dimensional (3-D) constellation scrambling scheme to simultaneously improve the ...Show More

Abstract:

In this paper, we propose and experimentally demonstrate a novel hybrid chaos-based three-dimensional (3-D) constellation scrambling scheme to simultaneously improve the physical layer security and transmission performance of the coherent optical orthogonal frequency division multiplexing (CO-OFDM) system. A 3-D regular hexahedron signal constellation is constructed by the constellation figure of merit principle, which not only expands the encryption dimension but improves the error performance. The dynamic parameters for constellation scrambling are generated by the 5-D hybrid chaotic scheme based on the combination of a 3-D hyperchaotic Hénon mapping and two independent 1-D Logistic mappings, as such a key space of ∼10133 is introduced to enhance the security level of OFDM data encryption during transmission. Furthermore, a transmission experiment for encryption of 144 Gbps 16-quadrature-amplitude-modulation OFDM data over a 100 km standard single-mode fiber in a CO-OFDM system is demonstrated. Compared with the case of using the 3-D rectangular constellation, a 2 dB bit error rate performance improvement is achieved. The results show that the proposed scheme could effectively enhance the system security and transmission performance, which suggests a scalable strategy for future physically secured CO-OFDM systems.
Published in: Journal of Lightwave Technology ( Volume: 40, Issue: 12, 15 June 2022)
Page(s): 3749 - 3760
Date of Publication: 24 February 2022

ISSN Information:

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.