Abstract:
Finite field multiplication is a fundamental and frequently used operation in various cryptographic circuits and systems. Because of its high complexity, this operation g...Show MoreMetadata
Abstract:
Finite field multiplication is a fundamental and frequently used operation in various cryptographic circuits and systems. Because of its high complexity, this operation generally determines the overall complexity and cost of these systems. Therefore, finite field multipliers and their hardware implementation have received considerable attention from researchers. This article proposes a methodology to design an efficient Galois field multiplier. First, space and time complexities for theoretical and field-programmable gate array (FPGA) implementations of M-term Karatsuba-like finite field multipliers were obtained. In addition, an algorithm was developed to obtain an efficient design based on a composite M-term Karatsuba-like multiplier. Furthermore, the proposed multipliers were verified and implemented on various FPGA devices, and implementation results were presented. Reported device utilization and latency indicated that the proposed multiplier is roughly 26% faster and 15% more efficient in the area–delay product compared to the standard Karatsuba multiplier. Moreover, comparison with state of the art also indicated that the proposed design is leading in terms of effectiveness and speed.
Published in: IEEE Transactions on Very Large Scale Integration (VLSI) Systems ( Volume: 30, Issue: 5, May 2022)
Funding Agency:
Keywords assist with retrieval of results and provide a means to discovering other relevant content. Learn more.
- IEEE Keywords
- Index Terms
- Finite Field ,
- Field Arithmetic ,
- Finite Field Arithmetic ,
- Polynomial Multiplier ,
- Time And Space ,
- High Complexity ,
- State Of The Art ,
- Time Complexity ,
- Degrees Of Freedom ,
- Smaller Size ,
- Performance Metrics ,
- Experimental Evaluation ,
- Similar Work ,
- Lookup Table ,
- Partial Products ,
- Space Complexity ,
- Composite Model ,
- Multiple Algorithms ,
- Information Security ,
- Recurrent Stage ,
- Bit Length ,
- Lower Stage ,
- Critical Path ,
- Delay Reduction ,
- Theoretical Complexity ,
- Total Delay ,
- Low Time Complexity
- Author Keywords
Keywords assist with retrieval of results and provide a means to discovering other relevant content. Learn more.
- IEEE Keywords
- Index Terms
- Finite Field ,
- Field Arithmetic ,
- Finite Field Arithmetic ,
- Polynomial Multiplier ,
- Time And Space ,
- High Complexity ,
- State Of The Art ,
- Time Complexity ,
- Degrees Of Freedom ,
- Smaller Size ,
- Performance Metrics ,
- Experimental Evaluation ,
- Similar Work ,
- Lookup Table ,
- Partial Products ,
- Space Complexity ,
- Composite Model ,
- Multiple Algorithms ,
- Information Security ,
- Recurrent Stage ,
- Bit Length ,
- Lower Stage ,
- Critical Path ,
- Delay Reduction ,
- Theoretical Complexity ,
- Total Delay ,
- Low Time Complexity
- Author Keywords