Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/SansSerif/Regular/Main.js
-: Optimized Delivery Architecture for HTTP Low-Latency Live Streaming | IEEE Journals & Magazine | IEEE Xplore

\mathsf{HxL3}: Optimized Delivery Architecture for HTTP Low-Latency Live Streaming


Abstract:

While most of the HTTP adaptive streaming (HAS) traffic continues to be video-on-demand (VoD), more users have started generating and delivering live streams with high qu...Show More

Abstract:

While most of the HTTP adaptive streaming (HAS) traffic continues to be video-on-demand (VoD), more users have started generating and delivering live streams with high quality through popular online streaming platforms. Typically, the video contents are generated by streamers and being watched by large audiences which are geographically distributed far away from the streamers’ locations. The locations of streamers and audiences create a significant challenge in delivering HAS-based live streams with low latency and high quality. Any problem in the delivery paths will result in a reduced viewer experience. In this paper, we propose \mathsf{HxL3}, a novel architecture for low-latency live streaming. \mathsf{HxL3} is agnostic to the protocol and codecs that can work equally with existing HAS-based approaches. By holding the minimum number of live media segments through efficient caching and prefetching policies at the edge, improved transmissions, as well as transcoding capabilities, \mathsf{HxL3} is able to achieve high viewer experiences across the Internet by alleviating rebuffering and substantially reducing initial startup delay and live stream latency. \mathsf{HxL3} can be easily deployed and used. Its performance has been evaluated using real live stream sources and entities that are distributed worldwide. Experimental results show the superiority of the proposed architecture and give good insights into how low latency live streaming is working.
Published in: IEEE Transactions on Multimedia ( Volume: 25)
Page(s): 2585 - 2600
Date of Publication: 07 February 2022

ISSN Information:

Funding Agency:


References

References is not available for this document.