Loading [a11y]/accessibility-menu.js
Predicting Security Vulnerabilities using Source Code Metrics | IEEE Conference Publication | IEEE Xplore

Predicting Security Vulnerabilities using Source Code Metrics


Abstract:

Large open-source systems generate and operate on a plethora of sensitive enterprise data. Thus, security threats or vulnerabilities must not be present in open-source sy...Show More

Abstract:

Large open-source systems generate and operate on a plethora of sensitive enterprise data. Thus, security threats or vulnerabilities must not be present in open-source systems and must be resolved as early as possible in the development phases to avoid catastrophic consequences. One way to recognize security vulnerabilities is to predict them while developers write code to minimize costs and resources. This study examines the effectiveness of machine learning algorithms to predict potential security vulnerabilities by analyzing the source code of a system. We obtained the security vulnerabilities dataset from Apache Tomcat security reports for version 4.x to 10.x. We also collected the source code of Apache Tomcat 4.x to 10.x to compute 43 object-oriented metrics. We assessed four traditional supervised learning algorithms, i.e., Naive Bayes (NB), Decision Tree (DT), K-Nearest Neighbors (KNN), and Logistic Regression (LR), to understand their efficacy in predicting security vulnerabilities. We obtained the highest accuracy of 80.6% using the KNN. Thus, the KNN classifier was demonstrated to be the most effective of all the models we built. The DT classifier also performed well but under-performed when it came to multi-class classification.
Date of Conference: 02-03 December 2021
Date Added to IEEE Xplore: 09 December 2021
ISBN Information:
Conference Location: Växjö, Sweden

Contact IEEE to Subscribe

References

References is not available for this document.