Loading [MathJax]/extensions/MathMenu.js
Decentralized Resilient Output-Feedback Control Design for Networked Control Systems Under Denial-of-Service | IEEE Journals & Magazine | IEEE Xplore

Decentralized Resilient Output-Feedback Control Design for Networked Control Systems Under Denial-of-Service


Abstract:

This article deals with the problem of decentralized resilient observer-based output-feedback control design for networked control systems (NCSs). The proposed scheme con...Show More

Abstract:

This article deals with the problem of decentralized resilient observer-based output-feedback control design for networked control systems (NCSs). The proposed scheme considers both network imperfections and security issues. It is assumed that the NCS is suffering from time-varying network-induced delays and time-varying transmission intervals. Moreover, data transmission is performed over a nonsecure network that suffers from a denial-of-service (DoS) attack. The DoS jamming attack has affected the network by the occurrence of consecutive packet dropouts, which result in attack-induced packet dropouts. Based on the fact that packet dropouts caused by DoS attacks naturally do not follow a specific statistical pattern, the attack-induced packet dropouts are modeled as an extension of time-varying intervals with no probability distribution. Sufficient conditions are provided to guarantee the uniformly globally exponential stability of the NCS in the form of linear matrix inequalities. Finally, the effectiveness and applicability of the proposed method are demonstrated by simulation results.
Published in: IEEE Systems Journal ( Volume: 16, Issue: 4, December 2022)
Page(s): 5620 - 5629
Date of Publication: 02 November 2021

ISSN Information:


Contact IEEE to Subscribe

References

References is not available for this document.