Loading [MathJax]/extensions/MathMenu.js
Flight Delay Prediction: Data Analysis and Model Development | IEEE Conference Publication | IEEE Xplore

Flight Delay Prediction: Data Analysis and Model Development


Abstract:

Flight delays in air transportation are a major concern that has adverse effects on the economy, the passengers, and the aviation industry. This matter critically require...Show More

Abstract:

Flight delays in air transportation are a major concern that has adverse effects on the economy, the passengers, and the aviation industry. This matter critically requires an accurate estimation for future flight delays that can be implemented to improve airport operations and customer satisfaction. Having said that, a massive volume of data and an extreme number of parameters have restricted the way to build an accurate model. Many existing flight delay prediction methods are based on small samples and/or are complex to interpret with little or no opportunity for machine learning deployment. This paper develops a prediction model by analysing the data of domestic flights within the United States of America (USA). The proposed model gains insight into factors causing flight delays, cancellations and the relationship between departure and arrival delay using exploratory data analysis. In addition, Random Forest (RF) algorithm is used to train and test the big dataset to help the model development. A web application has also been developed to implement the model and the testing results are presented with the limitation discussed.
Date of Conference: 02-04 September 2021
Date Added to IEEE Xplore: 15 November 2021
ISBN Information:
Conference Location: Portsmouth, United Kingdom

Contact IEEE to Subscribe

References

References is not available for this document.