Abstract:
The multi-day travel planning assists users with realistic travel itineraries by searching for the optimal travel routes through a set of candidate hotels and point-of-in...Show MoreMetadata
Abstract:
The multi-day travel planning assists users with realistic travel itineraries by searching for the optimal travel routes through a set of candidate hotels and point-of-interests (POIs). The multi-day travel planning problem (MTPP) can be solved as an optimization problem. Although conventional methods using von Neumann computers obtain good approximate solutions to the optimization problems, large computation costs are required to solve large-scale or complex problems due to the combinatorial explosion. On the other hand, Ising machines or quantum annealing machines are non-von Neumann computers, and those machines are developed to deal with complex optimization problems. In this paper, we propose an Ising-machine-based method for the MTPP. Practical factors of the MTPP include the POI satisfaction, travel expenses, and time limits. Those factors are mapped onto quadratic unconstrained binary optimization (QUBO) forms. We evaluate the proposed method using two real-world datasets including Sapporo and Tokyo, Japan. Experimental results show that the MTPP can be effectively solved using Ising machines compared with the conventional methods in terms of the solution quality and the execution time. To the best of our knowledge, this study is the first solution of the MTPP using Ising machines.
Date of Conference: 19-22 September 2021
Date Added to IEEE Xplore: 25 October 2021
ISBN Information: