Loading [MathJax]/extensions/MathZoom.js
Real-time Optimal Navigation Planning Using Learned Motion Costs | IEEE Conference Publication | IEEE Xplore

Real-time Optimal Navigation Planning Using Learned Motion Costs


Abstract:

Navigation on challenging terrain topographies requires the understanding of robots’ locomotion capabilities to produce optimal solutions. We present an integrated framew...Show More

Abstract:

Navigation on challenging terrain topographies requires the understanding of robots’ locomotion capabilities to produce optimal solutions. We present an integrated framework for real-time autonomous navigation of mobile robots based on elevation maps. The framework performs rapid global path planning and optimization that is aware of the locomotion capabilities of the robot. A GPU-aided, sampling-based path planner combined with a gradient-based path optimizer provides optimal paths by using a neural network-based locomotion cost predictor which is trained in simulation. We show that our approach is capable of planning and optimizing paths three orders of magnitude faster than RRT* on GPU-enabled hardware, enabling real-time deployment on mobile platforms. We successfully evaluate the framework on the ANYmal C quadrupedal robot in both simulations and real-world environments for path planning tasks on multiple complex terrains.
Date of Conference: 30 May 2021 - 05 June 2021
Date Added to IEEE Xplore: 18 October 2021
ISBN Information:

ISSN Information:

Conference Location: Xi'an, China

Contact IEEE to Subscribe

References

References is not available for this document.