Loading [MathJax]/extensions/MathMenu.js
Wind Turbine Failure Prediction Model using SCADA-based Condition Monitoring System | IEEE Conference Publication | IEEE Xplore

Wind Turbine Failure Prediction Model using SCADA-based Condition Monitoring System


Abstract:

The ultimate goal of a condition monitoring system for wind turbines (WT) is to predict the upcoming failures; this could be achieved using artificial intelligence techni...Show More

Abstract:

The ultimate goal of a condition monitoring system for wind turbines (WT) is to predict the upcoming failures; this could be achieved using artificial intelligence techniques. In this paper, a model for detecting excessive temperature anomalies in key components of WT i.e. gearbox, generator and transformer is proposed. This model consists of integrated modules continuously interact following the never-ending learning paradigm based on artificial neural networks addressing the challenge of the limited pre-classified data and lacking of the concept to be learned for a system with continuous change of its operating conditions: (i) the Normal Behavior (NB) module estimates the temperature of the WT key components, (ii) the Expected Time To Failure (ETTF) module calculates the deviation between the estimated normal temperature and the real-time measurement data to predict the upcoming failure of WT key components a few hours before occurring a failure, (iii) in the Anomaly Detection (AD) module, the temperature deviation time series signal is divided into normal or abnormal clusters. The proposed methodology has been applied on a real wind farm data in Germany. The results show that the system could correctly detect a large number of WT upcoming failures, this implies the effectiveness and generalization of the proposed model in terms of classification accuracy.
Date of Conference: 28 June 2021 - 02 July 2021
Date Added to IEEE Xplore: 29 July 2021
ISBN Information:
Conference Location: Madrid, Spain

I. Introduction

Over the past years wind energy is an increasingly significant source of renewable energy worldwide, in fact, 37% of the German electricity production from wind energy, that is to say around 60 GW net installed electricity generation [1]. Consequently, a major cause of concern came to the surface when it comes to maximizing the system reliability and availability thereby increasing the production (more revenue), for that reason, wind farm asset management (AM) is being highlighted [2]. AM in the context of maintenance represents 60% of the total AM cost mainly for Wind Turbine Generator (WTG) servicing and maintenance for durable assets of the wind farm [3].

Contact IEEE to Subscribe

References

References is not available for this document.