Loading web-font TeX/Main/Regular
CAN-D: A Modular Four-Step Pipeline for Comprehensively Decoding Controller Area Network Data | IEEE Journals & Magazine | IEEE Xplore

CAN-D: A Modular Four-Step Pipeline for Comprehensively Decoding Controller Area Network Data


Abstract:

Controller area networks (CANs) are a broadcast protocol for real-time communication of critical vehicle subsystems. Original equipment manufacturers of passenger vehicle...Show More

Abstract:

Controller area networks (CANs) are a broadcast protocol for real-time communication of critical vehicle subsystems. Original equipment manufacturers of passenger vehicles hold secret their mappings of CAN data to vehicle signals, and these definitions vary according to make, model, and year. Without these mappings, the wealth of real-time vehicle information hidden in the CAN packets is uninterpretable, severely impeding vehicle-related research, including CAN cybersecurity and privacy studies, aftermarket tuning, efficiency and performance monitoring, and fault diagnosis to name a few. Guided by the four-part CAN signal definition, we present CAN-D (CAN-Decoder), a modular, four-step pipeline for identifying each signal's boundaries (start bit and length), endianness (byte ordering), signedness (bit-to-integer encoding), and by leveraging diagnostic standards, augmenting a subset of the extracted signals with meaningful, physical interpretation. En route to CAN-D, we provide a comprehensive review of the CAN signal reverse engineering research. All previous methods ignore endianness and signedness, rendering them incapable of decoding many standard CAN signal definitions. Incorporating endianness grows the search space from 128 to 4.72E21 signal tokenizations and introduces a web of changing dependencies. In response, we formulate, formally analyze, and provide an efficient solution to an optimization problem, allowing identification of the optimal set of signal boundaries and byte orderings. In addition, we provide two novel, state-of-the-art signal boundary classifiers—both of which are superior to previous approaches in precision and recall in three different test scenarios—and the first signedness classification algorithm, which exhibits a > 97% F-score. Overall, CAN-D is the only solution with the potential to extract any CAN signal that is also the state of the art. In evaluation on 10 vehicles of different makes, CAN-D's average \ell ^1 error is five ti...
Published in: IEEE Transactions on Vehicular Technology ( Volume: 70, Issue: 10, October 2021)
Page(s): 9685 - 9700
Date of Publication: 28 June 2021

ISSN Information:

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.