Multi-Granularity Feature Interaction and Relation Reasoning for 3D Dense Alignment and Face Reconstruction | IEEE Conference Publication | IEEE Xplore

Scheduled Maintenance: On Tuesday, May 20, IEEE Xplore will undergo scheduled maintenance from 1:00-5:00 PM ET (6:00-10:00 PM UTC). During this time, there may be intermittent impact on performance. We apologize for any inconvenience.

Multi-Granularity Feature Interaction and Relation Reasoning for 3D Dense Alignment and Face Reconstruction


Abstract:

In this paper, we propose a multi-granularity feature interaction and relation reasoning network (MFIRRN) which can recover a detail-rich 3D face and perform more accurat...Show More

Abstract:

In this paper, we propose a multi-granularity feature interaction and relation reasoning network (MFIRRN) which can recover a detail-rich 3D face and perform more accurate dense alignment in an unconstrained environment. Traditional 3DMM-based methods directly regress parameters, resulting in the lack of fine-grained details in the reconstruction 3D face. To this end, we use different branches to capture discriminative features at different granularities, especially local features at medium and fine granularities. Meanwhile, the finer-grained branch network shares its information with the adjacent coarser-grained branch network to achieve feature interaction. Our model performs cross-granular information integration and inter-granular relationship reasoning to obtain prediction results. Extensive experiments on AFLW2000-3D and AFLW datasets demonstrate the validity of our method. The code is publicly available at https://github.com/leilimaster/MFIRRN.
Date of Conference: 06-11 June 2021
Date Added to IEEE Xplore: 13 May 2021
ISBN Information:

ISSN Information:

Conference Location: Toronto, ON, Canada

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.