Abstract:
This paper presents a coverage-guided grammar-based fuzzing technique for automatically synthesizing a corpus of concise test inputs. We walk-through a case study of a co...Show MoreMetadata
Abstract:
This paper presents a coverage-guided grammar-based fuzzing technique for automatically synthesizing a corpus of concise test inputs. We walk-through a case study of a compiler designed for education and the corresponding problem of generating meaningful test cases to provide to students. The prior state-of-the-art solution is a combination of fuzzing and test-case reduction techniques such as variants of delta-debugging. Our key insight is that instead of attempting to minimize convoluted fuzzer-generated test inputs, we can instead grow concise test inputs by construction using a form of iterative deepening. We call this approach bonsai fuzzing. Experimental results show that bonsai fuzzing can generate test corpora having inputs that are 16-45% smaller in size on average as compared to a fuzz-then-reduce approach, while achieving approximately the same code coverage and fault-detection capability.
Date of Conference: 22-30 May 2021
Date Added to IEEE Xplore: 07 May 2021
Print ISBN:978-1-6654-0296-5
Print ISSN: 1558-1225