Abstract:
We propose a novel edge generation procedure, Community-aware Edge Generation (CEG), which controls the internal structure of communities: hub dominance and clustering co...Show MoreMetadata
Abstract:
We propose a novel edge generation procedure, Community-aware Edge Generation (CEG), which controls the internal structure of communities: hub dominance and clustering coefficient. CEG is designed to be adaptable to existing graph generators. We demonstrate the effectiveness of CEG from three aspects. First, we validate that CEG generates graphs with similar internal structures to given real-world graphs. Second, we show how the parameters of CEG control the internal structure of communities. Finally, we show that CEG can generate various types of internal structures of communities by visualizing generated graphs.
Published in: 2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)
Date of Conference: 07-10 December 2020
Date Added to IEEE Xplore: 24 March 2021
ISBN Information: