Loading [MathJax]/extensions/MathMenu.js
MOSFET Gate Driver Circuit Design for High Repetitive (200 kHz) High Voltage (10 kV) Solid-State Pulsed-Power Modulator | IEEE Journals & Magazine | IEEE Xplore

MOSFET Gate Driver Circuit Design for High Repetitive (200 kHz) High Voltage (10 kV) Solid-State Pulsed-Power Modulator


Abstract:

Solid-state pulsed-power modulators can effectively generate high repetition rate pulses, which are required in applications where the process rate depends on the repetit...Show More

Abstract:

Solid-state pulsed-power modulators can effectively generate high repetition rate pulses, which are required in applications where the process rate depends on the repetition rate, e.g., plasma source ion implantation and deposition, plasma immersion ion milling, and diamond-like carbon coating. In this article, a solid-state pulsed-power modulator for generating high repetitive pulses is developed. Active pull-down circuits and designed metal-oxide-semiconductor field-effect transistor (MOSFET) gate drivers are applied to the modulator without increasing its size. The drivers enable a fast rise, fall time, and minimize pulsewidth, which are effective for high-repetition-rate pulse applications. The developed modulator exhibits a maximum output pulse voltage of ±10 kV, maximum output pulse current of 50 A, pulsewidth between 200 ns and 10 us, maximum pulse repetition rate of 200 kHz, and average output power of 10 kW. The operation principle of the designed MOSFET gate driver is analyzed in detail. Experimental results show that the modulator operates stably at a high repetition rate of 10 kV and 200 kHz and the feasibility of this proposed circuit for high repetition rate operation are verified.
Published in: IEEE Transactions on Power Electronics ( Volume: 36, Issue: 9, September 2021)
Page(s): 10461 - 10469
Date of Publication: 26 February 2021

ISSN Information:

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.