Approaches for Multi-View Redescription Mining | IEEE Journals & Magazine | IEEE Xplore

Approaches for Multi-View Redescription Mining


0 seconds of 0 secondsVolume 90%
Press shift question mark to access a list of keyboard shortcuts
Keyboard Shortcuts
Play/PauseSPACE
Increase Volume
Decrease Volume
Seek Forward
Seek Backward
Captions On/Offc
Fullscreen/Exit Fullscreenf
Mute/Unmutem
Seek %0-9
00:00
00:00
00:00
 
A framework for general multi-view redescription mining extending the capabilities of existing 2-view algorithms. The proposed framework significantly increases redescrip...

Abstract:

The task of redescription mining explores ways to re-describe different subsets of entities contained in a dataset and to reveal non-trivial associations between differen...Show More

Abstract:

The task of redescription mining explores ways to re-describe different subsets of entities contained in a dataset and to reveal non-trivial associations between different subsets of attributes, called views. This interesting and challenging task is encountered in different scientific fields, and is addressed by a number of approaches that obtain redescriptions and allow for the exploration and analyses of attribute associations. The main limitation of existing approaches to this task is their inability to use more than two views. Our work alleviates this drawback. We present a memory efficient, extensible multi-view redescription mining framework that can be used to relate multiple, i.e. more than two views, disjoint sets of attributes describing one set of entities. The framework can use any multi-target regression or multi-label classification algorithm, with models that can be represented as sets of rules, to generate redescriptions. Multi-view redescriptions are built using incremental view-extending heuristic from initially created two-view redescriptions. In this work, we use different types of Predictive Clustering trees algorithms (regular, extra, with random output selection) and the Random Forest thereof in order to improve the quality of final redescription sets and/or execution time needed to generate them. We provide multiple performance analyses of the proposed framework and compare it against the naive approach to multi-view redescription mining. We demonstrate the usefulness of the proposed multi-view extension on several datasets, including a use-case on understanding of machine learning models - a topic of growing importance in machine learning and artificial intelligence in general.
0 seconds of 0 secondsVolume 90%
Press shift question mark to access a list of keyboard shortcuts
Keyboard Shortcuts
Play/PauseSPACE
Increase Volume
Decrease Volume
Seek Forward
Seek Backward
Captions On/Offc
Fullscreen/Exit Fullscreenf
Mute/Unmutem
Seek %0-9
00:00
00:00
00:00
 
A framework for general multi-view redescription mining extending the capabilities of existing 2-view algorithms. The proposed framework significantly increases redescrip...
Published in: IEEE Access ( Volume: 9)
Page(s): 19356 - 19378
Date of Publication: 25 January 2021
Electronic ISSN: 2169-3536

Funding Agency:


References

References is not available for this document.