Loading [MathJax]/extensions/MathZoom.js
Joint Learning of Model Parameters and Coefficients for Online Nonlinear Estimation | IEEE Journals & Magazine | IEEE Xplore

Joint Learning of Model Parameters and Coefficients for Online Nonlinear Estimation


A diagram of the proposed online nonlinear estimation method. Target nonlinear systems/functions are approximated with unfixed Gaussians of which the parameters (heights,...

Abstract:

We propose a novel online algorithm for efficient nonlinear estimation. Target nonlinear functions are approximated with “unfixed”Gaussians of which the parameters are re...Show More

Abstract:

We propose a novel online algorithm for efficient nonlinear estimation. Target nonlinear functions are approximated with “unfixed”Gaussians of which the parameters are regarded as (a part of) variables. The Gaussian parameters (scales and centers), as well as the coefficients, are updated to suppress the instantaneous squared errors regularized by the ℓ1 norm of the coefficients to enhance the model efficiency. Another point for enhancing the model efficiency is the multiscale screening method, which is a hierarchical dictionary growing scheme to initialize Gaussian scales with multiple choices. To reduce the computational complexity, a certain selection strategy is presented for growing the dictionary and updating the Gaussian parameters. Computer experiments show that the proposed algorithm enjoys high adaptation-capability and produces efficient estimates.
A diagram of the proposed online nonlinear estimation method. Target nonlinear systems/functions are approximated with unfixed Gaussians of which the parameters (heights,...
Published in: IEEE Access ( Volume: 9)
Page(s): 24026 - 24040
Date of Publication: 22 January 2021
Electronic ISSN: 2169-3536

Funding Agency:


References

References is not available for this document.