Introduction
Stabilization of underactuated surface vehicles (USVs) is widely applied in maritime rescue, self-positioning, autonomous docking and other ones [1]. As shown in [2], the dynamics of underactuated vehicles contains no gravitational field component and, hence, does not satisfy Brockett’s necessary condition [3]. In this case, the vehicles cannot be asymptotically stabilized to the desired equilibrium point with time-invariant continuous feedback laws. For these reasons, stabilization of USVs has attracted great attentions in recent years [4]. Pettersen and Egeland gave a stabilization method in [5] that can exponentially stabilize the USVs to a vicinity of the equilibrium. References [1], [6], [7] gave control methods with different concerns that can guarantee global asymptotic stability of USVs. Additionally, finite-time stabilization methods have been used in USVs such as [15]. These works are commonly based on the assumption that no disturbance exists.
USV is susceptible to disturbances and unknown parameters. Without special treatment, it reduces the control accuracy of the USV and affects the stability of the closed-loop system. Therefore, the problem of interference suppression and compensation is the USV stabilization control important question. To this end, [8] adopts adaptive sliding mode design, which can use an adaptive function to estimate unknown disturbance. Reference [9] proposed a new model predictive control algorithm. Literature [10] designed an adaptive fuzzy stable controller; the adaptive fuzzy system is combined with the auxiliary dynamic function to approximate the unknown disturbance. These controllers rely on intelligent control methods such as model predictive control, neural network control, adaptive fuzzy control, etc., with high computational cost and unknown solvability parameters. Thus, we are interested in designing a non-intelligent method to stabilize USVs with disturbances.
Traditional robust control methods usually are not accurate enough to model disturbances; hence it is difficult to solve complex disturbance models. In such a case, disturbance observer-based control (DOBC) can play an important role; see [11], [12], and the references therein. By adjusting the feedback controller and the disturbance observer, the closed-loop stability performance and the interference compensation performance can be improved respectively, thereby effectively improving the anti-interference performance of the closed-loop system and reducing the conservativeness. Compared with asymptotic control approaches, the finite-time DOBC method has not only faster convergence speed but also better disturbance rejection properties and robustness [16], [17]. Further, a fixed-time DOBC strategy in [21] can guarantee states tracking preset trajectories within a designated time independent of the initial conditions. Hence, finding out a method combining fixed-DOBC and nonlinear control laws is needed for USVs stabilization.
The existing works on USV stabilization rarely consider mismatched disturbance rejection, which is still a challenging issue worth investigating. Most DOBC methods are only available for systems with matched disturbances [13], i.e., the disturbances and the control inputs enter the system via the same channel. However, mismatched disturbances are frequently encountered in practical USVs. By designing appropriate disturbance compensation gains, some DOBC methods, after extension, can cope with mismatched disturbances for nonlinear systems [13], [14]. However, due to the coupling between velocities and yaw angle in USVs, mismatched disturbances in the USV system cannot be eliminated using most DOBC methods. Thus, to design control laws for USVs with non-matching disturbances, is also a challenging problem that needs to be studied.
This article aims at giving a new method with a faster convergence rate and a more robust disturbance rejection performance for the stabilization of USVs. We want to find out a fixed-time DOBC method for USVs in the presence of simultaneous mismatched and matched disturbances. A higher-order sliding mode differentiator is an efficient DOBC method to estimate disturbances, which shows many attractive properties, including its insensitivity to external and internal disturbances, ultimate accuracy, and finite-time convergent performance [14]. How to adopt the higher-order sliding mode differentiator in the fixed-time observers requires extensive research. Most USV stabilization methods rely on the environment with no perturbance and coordinate transformations with some singular features. In the presence of disturbances, the closed-loop system has no robustness and may diverge to infinity. Even periodic time-varying methods avoid this defect; control laws may not work when the introduced auxiliary terms are near zero points so that the anti-interference ability of periodic time-varying control law is also intermittent. We first give a virtual yaw angle and surge velocity within the back-stepping method with a periodic term. It is illustrated that the bound of the USV system depends on the parameters of virtual states by the scaling method. Second, a fixed-time observer is introduced so that after the settling time, unknown disturbances can be seen as known. At last, by combining the observer and back-stepping method, a control law is proposed. The errors between actual and virtual yaw angles and surge velocities can converge in a given fixed time, ensuring the global boundedness of the original USV system.
Compared with the previous works, our main contributions are summarized as follows: (i) Mismatched disturbances are addressed. Based on the back-stepping method and a periodic term, the performance bound of the USV system depends solely on the controller parameters. (ii) Based on a novel higher-order sliding mode differentiator, the proposed observer can estimate disturbances in a fixed time instead of finite time. Unlike fixed time observer in [21], the proposed one can estimate high order derivatives of disturbances.
The rest of the work is structured as below. Section 2 gives the preliminaries and presents the problems to be solved. Section 3 and Section 4, respectively, shows the fixed-time disturbance observers and stabilization control algorithm for USVs. In Section 5, simulations validate the effectiveness of the proposed protocols. In Section 6, we conclude the results.
Problem Statements and Preliminaries
A. Modeling and Objective
Consider a USV as depicted in Figure 1 with an inertial frame \begin{align*}&\begin{cases} \dot {x} = u\mathrm {\cos }\psi - v\mathrm {\sin }\psi + \xi _{x},\\ \dot {y} = u\mathrm {\sin }\psi + v\mathrm {\cos }\psi + \xi _{y},\\ \dot {\psi }=r, \end{cases}\tag{1a}\\&\begin{cases} \dot {u}=-\dfrac {d_{11}}{m_{11}}u + \dfrac {m_{22}}{m_{11}}vr + \dfrac {\tau _{1}}{m_{11}} + \xi _{1},\\ \dot {v}=-\dfrac {d_{22}}{m_{22}}v-\dfrac {m_{11}}{m_{22}}ur+\xi _{v},\\ \dot {r}=-\dfrac {d_{33}}{m_{33}}r - \dfrac {m_{22} - m_{11}}{m_{33}}uv + \dfrac {\tau _{2}}{m_{33}} + \xi _{2}, \end{cases}\tag{1b}\end{align*}
Assumption 1:
Disturbances
Ocean disturbances are due to low-frequency waves, currents and wind, whose derivatives can be seen bounded. Here, we need not compensate for high-frequency disturbances, since they cause back-and-forth rocking motions of USVs [22].
Assumption 2:
The sway velocity of the USV is bounded by
The assumption of passive-boundedness for the sway velocity is a mild one widely adopted in the literature. For hostile enough sea conditions that may threaten the mission of vehicles, we are unable to attenuate the disturbances with actuators and even the most advanced control technologies may fail. So, tough disturbances are beyond our interest here [23].
B. Objective
The USV stabilization problem considered is stated as: under Assumptions 1 and 2, design a robust controller for the USV (1), so that system states
Remark 1:
In this article, we consider disturbances containing both matched and mismatched disturbances on the velocities and positions. This problem is very challenging but rarely considered in previous works. Note that uncertainties are included in the disturbances.
Fixed-Time Disturbance Observers
Before designing disturbance observers, the following definitions and lemma are introduced. Consider the following system \begin{equation*} \dot {z}=f(z,t)+\xi, \tag{2}\end{equation*}
Definition 1[26]:
The system (2) is said to be finite-time stable, if it is globally asymptotically stable and any solution
Definition 2[26]:
The system (2) is said to be fixed-time stable if it is finite-time stable and the settling time function
Define the symbol
Lemma 1[21]:
For the system (2), let \begin{equation*} \dot {\epsilon }_{\xi }=\kappa _{3}\mathbf {sign}(z-\hat {z}),\tag{3}\end{equation*}
\begin{equation*} \dot {\hat {z}}= \epsilon _{\xi } + \kappa _{1}\lceil \tilde {z}\rfloor ^{\frac {1}{2}} + \kappa _{3}\lceil \tilde {z}\rfloor ^{p}.\tag{4}\end{equation*}
\begin{align*}&\hspace {-0.5pc}T_{\xi }\leq \left \lbrack{ \frac {1}{\kappa _{2}(p - 1)(2^{1/4}\kappa _{1}/\kappa _{2})^{\frac {p- 1}{p + 1/2}}} + \frac {2(2^{3/4}\kappa _{1}/\kappa _{2})^{1/2}}{\kappa _{1}} }\right \rbrack \\&\qquad\qquad\qquad\quad \displaystyle {\times \,\left \lbrack{ 1 + \frac {\kappa _{3} + \sigma }{(\kappa _{3} - \sigma)(1 - \sqrt {2\kappa _{3}}/\kappa _{1})} }\right \rbrack.} \tag{5}\end{align*}
Compared with finite-time/asymptotic method, the observer in [21] can estimate the disturbance in a fixed time. The existence of mismatched disturbance make it necessary to estimate the higher-order derivatives of the disturbance, which is quite difficult. Here, we give our results on fixed-time observers based on high-order sliding mode differentiator.
Theorem 1:
For the system (2), let \begin{align*} \dot {\epsilon }_{\xi,0}=&\kappa _{3,0}\mathbf {sign}(z-\hat {z}), \\ \dot {\epsilon _{\xi,i}}=&\kappa _{3,i}\mathbf {sign}(\epsilon _{\xi,i-1}-\hat {\xi }_{i-1}), \\ \dot {\epsilon _{\xi,n}}=&\kappa _{3,n}\mathbf {sign}(\epsilon _{\xi,n-1}-\hat {\xi }_{n-1}),\tag{6}\end{align*}
\begin{align*} \dot {\hat {z}}=&f(z,t)+\epsilon _{\xi,0}+\kappa _{0,1}\lceil z-\hat {z}\rfloor ^{\frac {1}{2}} + \kappa _{0,2}\lceil z-\hat {z}\rfloor ^{p_{\xi,0}},\\ \dot {\hat {\xi }}_{0}=&\epsilon _{\xi,1}+\kappa _{1,1}\lceil \epsilon _{\xi,0}-\hat {\xi }_{0}\rfloor ^{\frac {1}{2}} + \kappa _{1,2}\lceil \epsilon _{\xi,0}-\hat {\xi }_{0}\rfloor ^{p_{\xi,1}},\\ \dot {\hat {\xi }}_{i-1}=&\epsilon _{\xi,i}+\kappa _{i,1}\lceil \epsilon _{\xi,i-1}-\hat {\xi }_{i-1}\rfloor ^{\frac {1}{2}} + \kappa _{i,2}\lceil \epsilon _{\xi,i-1}-\hat {\xi }_{i-1}\rfloor ^{p_{\xi,i}},\\ \dot {\hat {\xi }}_{n-1}=&\kappa _{n,1}\lceil \epsilon _{\xi,n-1}-\hat {\xi }_{n-1}\rfloor ^{\frac {1}{2}} + \kappa _{n,2}\lceil \epsilon _{\xi,n-1}-\hat {\xi }_{n-1}\rfloor ^{p_{\xi,n}},\end{align*}
Proof:
According to Lemma 1, \begin{align*}&\hspace {-1pc}T_{\xi,0} \\=&\left [{\!\! \frac {1}{\kappa _{2}(p_{\xi,0}\!-\!1)(2^{1/4}\kappa _{0,1}/\kappa _{0,2})^{\frac {p_{\xi,0}\!- \! 1}{p_{\xi,0} + 1/2}}}\!+\! \frac {2(2^{3/4}\kappa _{0,1}/\kappa _{0,2})^{1/2}}{\kappa _{1}} \!}\right] \\&{\times \,\left \lbrack{ 1 + \frac {\kappa _{3,0} + L_{1}}{(\kappa _{3,0} - L_{1})(1 - \sqrt {2\kappa _{0,3}}/\kappa _{0,1})} }\right \rbrack.}\end{align*}
Case 1. According to the equation (6), we can have \begin{equation*} \dot {\epsilon _{\xi,1}}=\kappa _{3,1}\mathbf {sign}(\dot {\xi }-\hat {\xi }_{0}),\tag{7}\end{equation*}
\begin{align*}&\hspace {-1pc}T_{\xi,1} \\=&\left [{\!\! \frac {1}{\kappa _{2}(p_{\xi,1}\!-\!1)(2^{1/4}\kappa _{1,1}/\kappa _{2,1})^{\frac {p_{\xi,1}- 1}{p_{\xi,1} + 1/2}}}\!+\! \frac {2(2^{3/4}\kappa _{1,1}/\kappa _{2,1})^{1/2}}{\kappa _{1,1}} \!\!}\right]\\&{\times \,\left \lbrack{ 1 + \frac {\kappa _{1,3} + L_{2}}{(\kappa _{3,1} - L_{2})(1 - \sqrt {2\kappa _{3,1}}/\kappa _{1,1})} }\right \rbrack.}\end{align*}
Case \begin{align*}&\hspace {-1pc}T_{\xi,j} \\=&\left [{\!\! \frac {1}{\kappa _{2}(p_{\xi,j}\!-\!1)(2^{1/4}\kappa _{1,j}/\kappa _{2,j})^{\frac {p_{\xi,j}- 1}{p_{\xi,j}\! +\! 1/2}}}\!+ \!\frac {2(2^{3/4}\kappa _{1,j}/\kappa _{2,j})^{1/2}}{\kappa _{1,j}} \!\!}\right]\\&{\times \,\left \lbrack{ 1 + \frac {\kappa _{3,j} + L_{j+1}}{(\kappa _{3,j} - L_{j+1})(1 - \sqrt {2\kappa _{3,j}}/\kappa _{1,j})} }\right \rbrack.}\end{align*}
Case \begin{align*} T_{\xi,n}=&\Bigg \lbrack \frac {1}{\kappa _{2}(p_{\xi,n}-1)(2^{1/4}\kappa _{1,n}/\kappa _{2,n})^{\frac {p_{\xi,n}- 1}{p_{\xi,n} + 1/2}}}\\&+\, \frac {2(2^{3/4}\kappa _{1,n}/\kappa _{2,n})^{1/2}}{\kappa _{1,n}} \Bigg \rbrack \\&\times \,\left \lbrack{ 1+\frac {\kappa _{3,n} + L_{n+1}}{(\kappa _{3,n}-L_{n+1})(1-\sqrt {2\kappa _{3,n}}/\kappa _{1,n})}}\right \rbrack.\end{align*}
In summary, the final estimation time \begin{align*} T_{sum}\leq&\sum \limits _{j=0}^{n}\Bigg \{\Bigg \lbrack \frac {1}{\kappa _{2}(p_{\xi,j}-1)(2^{1/4}\kappa _{1,j}/\kappa _{2,j})^{\frac {p_{\xi,j}- 1}{p_{\xi,j} + 1/2}}} \\&+\, \frac {2(2^{3/4}\kappa _{1,j}/\kappa _{2,j})^{1/2}}{\kappa _{1,j}} \Bigg \rbrack \\&\times \,\left \lbrack{ 1 + \frac {\kappa _{3,j} + L_{j+1}}{(\kappa _{3,j} - L_{j+1})(1 - \sqrt {2\kappa _{3,j}}/\kappa _{1,j})} }\right \rbrack \Bigg \}. \\\tag{8}\end{align*}
Remark 2:
In most existing observer methods, the estimation error can be eliminated asymptotically or within a finite time [24]. The proposed observer can estimate disturbances within a fixed time. Compared with the fixed-time observer in [21], the new method can estimate the
The above result can be extended for fixed-time disturbance observer design for USVs. Let \begin{align*} {\dot {\epsilon }}_{x}=&\kappa _{{\tilde {x}}_{3}}\mathbf {sign}(\tilde {x}),\quad {\dot {\epsilon }}_{y} = \kappa _{{\tilde {y}}_{3}}\mathbf {sign}(\tilde {y}),~{\dot {\epsilon }}_{v} = \kappa _{{\tilde {v}}_{3}}\mathbf {sign}(\tilde {v}), \\ \tag{9a}\\ \dot {\epsilon }_{1}=&\kappa _{{\tilde {u}}_{3}}\mathbf {sign}(\tilde {u}),\quad {\dot {\epsilon }}_{2} = \kappa _{{\tilde {r}}_{3}}\mathbf {sign}(\tilde {r}),~\dot {\epsilon }_{y,1} = \kappa _{\tilde {\xi }_{y,3}}\mathbf {sign}(\tilde {y}), \\\tag{9b}\end{align*}
Corollary 1:
For the USV system in (1) with Assumption 1, the observers in (9a-9b) can estimate disturbances
Proof:
Let \begin{align*} \dot {\tilde {x}}=-\kappa _{{\tilde {x}}_{1}}\lceil \tilde {x}\rfloor ^{\frac {1}{2}}-\kappa _{{\tilde {x}}_{2}}\lceil \tilde {x}\rfloor ^{p_{x}}+e_{x},~{\dot {e}}_{x}=-\kappa _{{\tilde {x}}_{3}}\mathbf {sign}(\tilde {x})+{\dot {\xi }}_{x}. \\\tag{10}\end{align*}
\begin{equation*} p_{x}>1,~\kappa _{{\tilde {x}}_{1}}>\sqrt {2\kappa _{{\tilde {x}}_{3}}},~\kappa _{{\tilde {x}}_{2}}>0,~\kappa _{{\tilde {x}}_{3}}>4\sigma _{x},\tag{11}\end{equation*}
\begin{align*} T_{\tilde {x}} \!\leq \! \left \lbrack{ \frac {1}{\kappa _{{\tilde {x}}_{2}}(p_{x} - 1)(2^{1/4}\kappa _{{\tilde {x}}_{1}}/\kappa _{{\tilde {x}}_{2}})^{\frac {p_{x} - 1}{p_{x} + 1/2}}} + \frac {2(2^{3/4}\kappa _{{\tilde {x}}_{1}}/\kappa _{{\tilde {x}}_{2}})^{1/2}}{\kappa _{{\tilde {x}}_{1}}} }\right \rbrack \end{align*}
Similarly, we can prove that \begin{align*} T_{d\tilde {y}}\leq&\Bigg \lbrack \frac {1}{\kappa _{d{\tilde {y}}_{2}}(p_{y} - 1)(2^{1/4}\kappa _{{d\tilde {y}}_{1}}/\kappa _{{d\tilde {y}}_{2}})^{\frac {p_{\xi _{y}} - 1}{p_{\xi _{y}} + 1/2}}} \\&+\,\frac {2(2^{3/4}\kappa _{{d\tilde {y}}_{1}}/\kappa _{{d\tilde {y}}_{2}})^{1/2}}{\kappa _{{d\tilde {y}}_{1}}} \Bigg \rbrack \\&\times \,\left \lbrack{ 1 + \frac {d\kappa _{{d\tilde {y}}_{3}} + \sigma _{y,2}}{(\kappa _{{d\tilde {y}}_{3}} - \sigma _{y,2})(1 - \sqrt {2\kappa _{{d\tilde {y}}_{3}}}/\kappa _{{d\tilde {y}}_{1}})} }\right \rbrack.\end{align*}
The proof is completed.
Remark 3:
Note that the estimation of
Stabilization of USVs
In this section, a time-varying control law is proposed for (1) in two steps on the basis of back-stepping techniques and the proposed fixed-time observer.
A. Stabilization of Subsystem [x,y]
In the first step, we consider the stabilization problem of subsystem \begin{align*} \dot {e_{x}}=&\delta _{u}u - \delta _{v}v - \lambda \alpha y\cos \left ({{\alpha t} }\right) + \xi _{x} - \lambda \sin \left ({{\alpha t} }\right)\xi _{y}, \qquad \tag{12a}\\ \dot {y}=&u\mathrm {\sin }\psi + v\mathrm {\cos }\psi + \xi _{y},\tag{12b}\end{align*}
Let \begin{align*} \psi _{d}=&-\arctan {\left \lbrack{ \frac {\kappa _{\psi }}{\lambda }\frac {y^{2}\cos \left ({{\alpha t} }\right)}{\beta + y^{2}} }\right \rbrack,~} \\ u_{d}=&\frac {~\lambda \alpha y\cos \left ({{\alpha t} }\right)-\kappa _{u}\left \lbrack{ x - \lambda y\sin \left ({{\alpha t} }\right) }\right \rbrack }{\cos \left ({\psi _{d} }\right)\left [{ 1 - \lambda \tan \left ({\psi _{d} }\right)\sin \left ({{\alpha t} }\right) }\right]},\tag{13}\end{align*}
Theorem 2:
For subsystem (1a) with Assumptions 1 and 2 and virtual inputs
Position states
andx satisfy thaty \begin{align*} \sup \limits _{t \rightarrow \infty }\left |{x}\right | \leq \frac {\Upsilon _{1}}{\kappa _{u}} + \lambda S_{M} + \frac {\lambda \pi }{2\alpha }\Upsilon _{3},~\sup \limits _{t \rightarrow \infty }|y| \leq S_{M} + \frac {\pi }{2\alpha }\Upsilon _{3}. \\\tag{14}\end{align*} View Source\begin{align*} \sup \limits _{t \rightarrow \infty }\left |{x}\right | \leq \frac {\Upsilon _{1}}{\kappa _{u}} + \lambda S_{M} + \frac {\lambda \pi }{2\alpha }\Upsilon _{3},~\sup \limits _{t \rightarrow \infty }|y| \leq S_{M} + \frac {\pi }{2\alpha }\Upsilon _{3}. \\\tag{14}\end{align*}
The yaw angle and surge velocity
and\psi satisfy thatu Here\begin{align*} \sup \limits _{t \rightarrow \infty }|\psi |\leq&\arctan \left ({\frac {\kappa _{\psi }}{\lambda }}\right), \\ \sup \limits _{t \rightarrow \infty }|u|\leq&\frac {\lambda \alpha \left ({S_{M}+\frac {\pi \Upsilon _{3}}{2\alpha }}\right)+\Upsilon _{1}}{\left ({1-\frac {\kappa _{\psi }}{2}}\right)\cos \left ({\frac {\kappa _{\psi }}{\lambda }}\right)}.\tag{15}\end{align*} View Source\begin{align*} \sup \limits _{t \rightarrow \infty }|\psi |\leq&\arctan \left ({\frac {\kappa _{\psi }}{\lambda }}\right), \\ \sup \limits _{t \rightarrow \infty }|u|\leq&\frac {\lambda \alpha \left ({S_{M}+\frac {\pi \Upsilon _{3}}{2\alpha }}\right)+\Upsilon _{1}}{\left ({1-\frac {\kappa _{\psi }}{2}}\right)\cos \left ({\frac {\kappa _{\psi }}{\lambda }}\right)}.\tag{15}\end{align*}
,\Upsilon _{1}= \left ({\lambda + 1 }\right)v_{\max }+\xi _{xmax}+ \lambda \xi _{ymax}, \Upsilon _{3} = \frac {\Upsilon _{1}}{1 - \kappa _{\psi }} + v_{\max } + \xi _{ymax} is the maximum real solution to the following equation aboutS_{M} ,S \begin{equation*} \left ({\frac {\pi }{\alpha }-2\rho }\right)\frac {\kappa _{\psi }\alpha \sin ^{2}(\alpha \rho)}{1 + \kappa _{\psi }}\frac {S^{3}}{\beta + S^{2}} = \frac {\pi }{\alpha }\Upsilon _{3},\tag{16}\end{equation*} View Source\begin{equation*} \left ({\frac {\pi }{\alpha }-2\rho }\right)\frac {\kappa _{\psi }\alpha \sin ^{2}(\alpha \rho)}{1 + \kappa _{\psi }}\frac {S^{3}}{\beta + S^{2}} = \frac {\pi }{\alpha }\Upsilon _{3},\tag{16}\end{equation*}
is the positive constant to be chosen.0 < \rho < \frac {\pi }{2\alpha }
Proof:
According to system (12) and equation (13), the dynamics of subsystem
can be described as\left \lbrack{ e_{x},y }\right \rbrack where\begin{align*} \dot {e_{x}}=&- \kappa _{u}e_{x} - \delta _{v}v + \xi _{x} - \lambda \sin \left ({\alpha t }\right)\xi _{y},\tag{17}\\ \dot {y}=&- \frac {\kappa _{\psi }\alpha \cos ^{2}\left ({{\alpha t} }\right)}{\lambda \Delta }\frac {y^{3}}{\beta + y^{2}} + \frac {\kappa _{u}}{\Delta }\tanh ^{2}{\left ({y }\right)\cos \left ({{\alpha t} }\right)} \\&\times \,e_{x}+v\cos \psi + \xi _{y},\tag{18}\end{align*} View Source\begin{align*} \dot {e_{x}}=&- \kappa _{u}e_{x} - \delta _{v}v + \xi _{x} - \lambda \sin \left ({\alpha t }\right)\xi _{y},\tag{17}\\ \dot {y}=&- \frac {\kappa _{\psi }\alpha \cos ^{2}\left ({{\alpha t} }\right)}{\lambda \Delta }\frac {y^{3}}{\beta + y^{2}} + \frac {\kappa _{u}}{\Delta }\tanh ^{2}{\left ({y }\right)\cos \left ({{\alpha t} }\right)} \\&\times \,e_{x}+v\cos \psi + \xi _{y},\tag{18}\end{align*}
. Equation (17) implies that\Delta = 1/\lambda - \tan \left ({\psi _{d} }\right)\sin \left ({{\alpha t} }\right) can be obtained ase_{x} Since\begin{align*}&\hspace {-0.5pc}e_{x} = e^{- \kappa _{u}t}e_{x}\left ({0 }\right) + e^{- \kappa _{u}t}\int _{0}^{t}e^{\kappa _{u}\sigma }[- \delta _{v}\left ({\sigma }\right)v\left ({\sigma }\right) + \xi _{x}\left ({\sigma }\right) \\&\qquad\qquad\qquad\qquad\qquad\quad \displaystyle {-\,\lambda \sin \left ({\alpha \sigma }\right)\xi _{y}\left ({s }\right)]{d\sigma }.} \tag{19}\end{align*} View Source\begin{align*}&\hspace {-0.5pc}e_{x} = e^{- \kappa _{u}t}e_{x}\left ({0 }\right) + e^{- \kappa _{u}t}\int _{0}^{t}e^{\kappa _{u}\sigma }[- \delta _{v}\left ({\sigma }\right)v\left ({\sigma }\right) + \xi _{x}\left ({\sigma }\right) \\&\qquad\qquad\qquad\qquad\qquad\quad \displaystyle {-\,\lambda \sin \left ({\alpha \sigma }\right)\xi _{y}\left ({s }\right)]{d\sigma }.} \tag{19}\end{align*}
,\left |{ v }\right | \leq v_{\max } and\xi _{x} \leq \xi _{xmax} , we can have that\xi _{y} \leq \xi _{ymax} \begin{equation*} \sup \limits _{t \rightarrow \infty }\left |{ e_{x} }\right | \leq \frac {\left \lbrack{ \left ({\lambda + 1 }\right)v_{\max } + \xi _{xmax} + \lambda \xi _{ymax} }\right \rbrack }{\kappa _{u}}. \tag{20}\end{equation*} View Source\begin{equation*} \sup \limits _{t \rightarrow \infty }\left |{ e_{x} }\right | \leq \frac {\left \lbrack{ \left ({\lambda + 1 }\right)v_{\max } + \xi _{xmax} + \lambda \xi _{ymax} }\right \rbrack }{\kappa _{u}}. \tag{20}\end{equation*}
Let
and\Upsilon _{1} = \left ({\lambda + 1 }\right)v_{\max } + \xi _{xmax} + \lambda \xi _{ymax} . According to equation (20), one hasS = \left |{ y }\right | Since the term\begin{align*}&\hspace {-0.5pc}\lim \limits _{t\rightarrow \infty }\dot {S} \leq - \frac {\kappa _{\psi }\alpha \cos ^{2}\left ({{\alpha t}}\right)}{1 + \kappa _{\psi }}\frac {S^{3}}{\beta + S^{2}} + \frac {\kappa _{u}}{1 - \kappa _{\psi }}\Upsilon _{1} \\&\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad \displaystyle {+\,v_{\max } + \xi _{ymax}.} \tag{21}\end{align*} View Source\begin{align*}&\hspace {-0.5pc}\lim \limits _{t\rightarrow \infty }\dot {S} \leq - \frac {\kappa _{\psi }\alpha \cos ^{2}\left ({{\alpha t}}\right)}{1 + \kappa _{\psi }}\frac {S^{3}}{\beta + S^{2}} + \frac {\kappa _{u}}{1 - \kappa _{\psi }}\Upsilon _{1} \\&\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad \displaystyle {+\,v_{\max } + \xi _{ymax}.} \tag{21}\end{align*}
on the right hand side of equation (21) is periodic, the effect of term\cos ^{2}\left ({{\alpha t}}\right) is time-varying depending on the value of\frac {\kappa _{\psi }\alpha \cos ^{2}\left ({{\alpha t} }\right)}{1 + 1/\lambda }\frac {S^{3}}{\beta + S^{2}} . Hence to facilitate calculations, introduce a constant 0\cos ^{2}\left ({{\alpha t}}\right) as the piecewise point. Then for any integer< \rho < \pi /2\alpha , by the method of enlarging and reducing, we can divide the control process into two piecesk andW at the pointD , where\rho where\begin{align*} W=&\left \lbrack{ \frac {k}{\alpha }\pi + \frac {\pi }{2\alpha } + \rho,\frac {k}{\alpha }\pi + \frac {3\pi }{2\alpha } - \rho }\right \rbrack,\tag{22a}\\ D=&\left ({\frac {k}{\alpha }\pi + \frac {\pi }{2\alpha } - \rho,\frac {k}{\alpha }\pi + \frac {\pi }{2\alpha } + \rho }\right),\tag{22b}\end{align*} View Source\begin{align*} W=&\left \lbrack{ \frac {k}{\alpha }\pi + \frac {\pi }{2\alpha } + \rho,\frac {k}{\alpha }\pi + \frac {3\pi }{2\alpha } - \rho }\right \rbrack,\tag{22a}\\ D=&\left ({\frac {k}{\alpha }\pi + \frac {\pi }{2\alpha } - \rho,\frac {k}{\alpha }\pi + \frac {\pi }{2\alpha } + \rho }\right),\tag{22b}\end{align*}
. With the above statements and inequality (21), for any integerk = 1,2,\ldots,n , we can havek where\begin{align*} \dot {S} \leq \begin{cases} - \dfrac {\kappa _{\psi }\alpha \Upsilon _{2}}{1 + 1/\lambda }\dfrac {S^{3}}{\beta + S^{2}} + \Upsilon _{3},& t \in W,\\ \Upsilon _{3}, &t \in D, \end{cases}\tag{23}\end{align*} View Source\begin{align*} \dot {S} \leq \begin{cases} - \dfrac {\kappa _{\psi }\alpha \Upsilon _{2}}{1 + 1/\lambda }\dfrac {S^{3}}{\beta + S^{2}} + \Upsilon _{3},& t \in W,\\ \Upsilon _{3}, &t \in D, \end{cases}\tag{23}\end{align*}
. Define\Upsilon _{3} = \frac {\Upsilon _{1}}{1 - \kappa _{\psi }} + v_{\max } + \xi _{ymax} . Then, in time interval\Upsilon _{2}=\sin ^{2}(\alpha \rho) , sinceW is larger than\cos ^{2}\left ({{\alpha t} }\right) , by the method of enlarging and reducing, we can obtain that inequality\Upsilon _{2} holds. In time interval\left ({\ref {a6} }\right) , sinceD is smaller than\cos ^{2}\left ({{\alpha t} }\right) , the worst case where no beneficial effect exists on the stability of\Upsilon _{2} is considered. This implies that the termS can be seemed as zero and hence the inequality\cos ^{2}\left ({{\alpha t} }\right) is obtained. To help the reader grasp the essence of our method, the working principle is shown in the Figure 2. In the region\left ({~\ref {a6} }\right) , the virtual control laws can approximate to zero, and in the regionD , virtual lawsW andu_{d} take effect.\psi _{d} Since that
is the maximum solution to the equationS_{M} , when\left ({\frac {\pi }{\alpha } - 2\rho }\right)\left \lbrack{ \frac {\kappa _{\psi }\alpha \Upsilon _{2}}{1 + \kappa _{\psi }}\frac {S^{3}}{\beta + S^{2}} }\right \rbrack = \frac {\pi }{\alpha }{\Upsilon }_{3} , we can haveS > S_{M} The equations (23–24) means that\begin{equation*} \left ({\frac {\pi }{\alpha } - 2\rho }\right)\left \lbrack{ \frac {\kappa _{\psi }\alpha \Upsilon _{2}}{1 + \kappa _{\psi }}\frac {S^{3}}{\beta + S^{2}} - \Upsilon _{3} }\right \rbrack > {2\rho \Upsilon }_{3}. \tag{24}\end{equation*} View Source\begin{equation*} \left ({\frac {\pi }{\alpha } - 2\rho }\right)\left \lbrack{ \frac {\kappa _{\psi }\alpha \Upsilon _{2}}{1 + \kappa _{\psi }}\frac {S^{3}}{\beta + S^{2}} - \Upsilon _{3} }\right \rbrack > {2\rho \Upsilon }_{3}. \tag{24}\end{equation*}
Thus if\begin{align*}&\hspace {-1.2pc}\int _{\frac {k}{\alpha }\pi + \frac {\pi }{2\alpha } -\rho }^{\frac {k}{\alpha }\pi + \frac {3\pi }{2\alpha } - \rho }{\dot {S}\left ({\sigma }\right){d\sigma }} \\=&\int _{\frac {k}{\alpha }\pi + \frac {\pi }{2\alpha } + \rho }^{\frac {k}{\alpha }\pi + \frac {3\pi }{2\alpha } -\rho }{\dot {S}\left ({\sigma }\right){d\sigma }} + \int _{\frac {k}{\alpha }\pi +\frac {\pi }{2\alpha }-\rho }^{k\pi + \frac {\pi }{2\alpha }+\rho }{\dot {S}\left ({\sigma }\right){d\sigma }} \\\leq&{2\rho \Upsilon }_{3}-\left ({\frac {\pi }{\alpha } - 2\rho }\right)\left \lbrack{ \frac {\kappa _{\psi }\alpha \Upsilon _{2}}{1 + \kappa _{\psi }}\frac {S^{3}}{\beta + S^{2}} - \Upsilon _{3} }\right \rbrack < 0.\tag{25}\end{align*} View Source\begin{align*}&\hspace {-1.2pc}\int _{\frac {k}{\alpha }\pi + \frac {\pi }{2\alpha } -\rho }^{\frac {k}{\alpha }\pi + \frac {3\pi }{2\alpha } - \rho }{\dot {S}\left ({\sigma }\right){d\sigma }} \\=&\int _{\frac {k}{\alpha }\pi + \frac {\pi }{2\alpha } + \rho }^{\frac {k}{\alpha }\pi + \frac {3\pi }{2\alpha } -\rho }{\dot {S}\left ({\sigma }\right){d\sigma }} + \int _{\frac {k}{\alpha }\pi +\frac {\pi }{2\alpha }-\rho }^{k\pi + \frac {\pi }{2\alpha }+\rho }{\dot {S}\left ({\sigma }\right){d\sigma }} \\\leq&{2\rho \Upsilon }_{3}-\left ({\frac {\pi }{\alpha } - 2\rho }\right)\left \lbrack{ \frac {\kappa _{\psi }\alpha \Upsilon _{2}}{1 + \kappa _{\psi }}\frac {S^{3}}{\beta + S^{2}} - \Upsilon _{3} }\right \rbrack < 0.\tag{25}\end{align*}
, the value ofS\left ({\frac {k + 1}{\alpha }\pi + \frac {3\pi }{2\alpha } - \rho }\right) > S_{M} is smaller thanS\left ({\frac {k + 1}{\alpha }\pi + \frac {3\pi }{2\alpha } - \rho }\right) . In conclusion, we can obtain thatS\left ({\frac {k}{\alpha }\pi + \frac {3\pi }{2\alpha } - \rho }\right) \begin{equation*} \lim _{k \rightarrow \infty }S\left ({\frac {k}{\alpha }\pi + \frac {3\pi }{2\alpha } - \rho }\right) < S_{M}. \tag{26}\end{equation*} View Source\begin{equation*} \lim _{k \rightarrow \infty }S\left ({\frac {k}{\alpha }\pi + \frac {3\pi }{2\alpha } - \rho }\right) < S_{M}. \tag{26}\end{equation*}
Review the inequality (23), since
in the region\dot {S} \leq \Upsilon _{3} , according to the inequality (26), we conclude that for anyD ,t\in D In the region\begin{equation*} \lim _{k \rightarrow \infty }S\left ({t }\right) < S_{M} + 2\rho \Upsilon _{3}. \tag{27}\end{equation*} View Source\begin{equation*} \lim _{k \rightarrow \infty }S\left ({t }\right) < S_{M} + 2\rho \Upsilon _{3}. \tag{27}\end{equation*}
, according to the inequality (27), for anyW , it is established thatS\left ({t }\right) > S_{M} + 2\rho \Upsilon _{3} . Conclusively, whenever\dot {S} < 0 ort\in W , we can havet\in D where\begin{equation*} \lim _{t \rightarrow \infty }\left |{ y\left ({t }\right) }\right |=\lim _{t \rightarrow \infty }S \leq \frac {\pi }{2\alpha }\Upsilon _{3} + S_{M} + {2\Upsilon }_{3}\rho S_{M}. \tag{28}\end{equation*} View Source\begin{equation*} \lim _{t \rightarrow \infty }\left |{ y\left ({t }\right) }\right |=\lim _{t \rightarrow \infty }S \leq \frac {\pi }{2\alpha }\Upsilon _{3} + S_{M} + {2\Upsilon }_{3}\rho S_{M}. \tag{28}\end{equation*}
,\Upsilon _{3} = \frac {\Upsilon _{1}}{1 - \kappa _{\psi }} + v_{\max } + \xi _{ymax} .\Upsilon _{1} = \left ({\lambda + 1 }\right)v_{\max } + \xi _{xmax} + \lambda \xi _{ymax} Together with the inequality (20), we can obtain that
The equations (28) and (29) show the results in (i).\begin{equation*} \lim \limits _{t \rightarrow \infty }\left |{ x }\right | \leq \frac {\Upsilon _{1}}{\kappa _{u}} + \lambda S_{M} + \frac {\lambda \pi }{2\alpha }\Upsilon _{3}. \tag{29}\end{equation*} View Source\begin{equation*} \lim \limits _{t \rightarrow \infty }\left |{ x }\right | \leq \frac {\Upsilon _{1}}{\kappa _{u}} + \lambda S_{M} + \frac {\lambda \pi }{2\alpha }\Upsilon _{3}. \tag{29}\end{equation*}
According to the equation (13), with the assumption that
we can have\psi =\psi _{d} Since\begin{equation*} \psi =-\arctan {\left \lbrack{ \frac {\kappa _{\psi }}{\lambda }\frac {y^{2}\cos \left ({{\alpha t} }\right)}{\beta + y^{2}} }\right \rbrack }.\tag{30}\end{equation*} View Source\begin{equation*} \psi =-\arctan {\left \lbrack{ \frac {\kappa _{\psi }}{\lambda }\frac {y^{2}\cos \left ({{\alpha t} }\right)}{\beta + y^{2}} }\right \rbrack }.\tag{30}\end{equation*}
, the property that|\frac {y^{2}\cos \left ({{\alpha t} }\right)}{\beta + y^{2}} | < 1 can be obtained. Additionally, if the surge velocity\sup \limits _{t \rightarrow \infty }|\psi | < \arctan \left ({\frac {\kappa _{\psi }}{\lambda }}\right) , it can be concluded thatu=u_{d} where\begin{equation*} u = \frac {~\lambda \alpha y\cos \left ({{\alpha t} }\right)-\kappa _{u}e_{x}}{\cos \left ({\psi _{d} }\right)\left ({1 - \lambda \tan \left ({\psi _{d} }\right)\sin \left ({{\alpha t} }\right) }\right)},\tag{31}\end{equation*} View Source\begin{equation*} u = \frac {~\lambda \alpha y\cos \left ({{\alpha t} }\right)-\kappa _{u}e_{x}}{\cos \left ({\psi _{d} }\right)\left ({1 - \lambda \tan \left ({\psi _{d} }\right)\sin \left ({{\alpha t} }\right) }\right)},\tag{31}\end{equation*}
.e_{x} = x - {\lambda y}\sin \left ({{\alpha t} }\right) Additionally, according to the equation (20),
satisfies thate_{x} This implies that\begin{equation*} \sup \limits _{t \rightarrow \infty }\left |{ e_{x} }\right | \leq \frac {\left \lbrack{ \left ({\lambda + 1 }\right)v_{\max } + \xi _{xmax} + \lambda \xi _{ymax} }\right \rbrack }{\kappa _{u}}.\tag{32}\end{equation*} View Source\begin{equation*} \sup \limits _{t \rightarrow \infty }\left |{ e_{x} }\right | \leq \frac {\left \lbrack{ \left ({\lambda + 1 }\right)v_{\max } + \xi _{xmax} + \lambda \xi _{ymax} }\right \rbrack }{\kappa _{u}}.\tag{32}\end{equation*}
\begin{equation*} \sup \limits _{t \rightarrow \infty }|u|\leq \frac {\lambda \alpha \left({S_{M}+\frac {\pi \Upsilon _{3}}{2\alpha }}\right)+\Upsilon _{1}}{\left({1-\frac {\kappa _{\psi }}{2}}\right)\cos \left({\frac {\kappa _{\psi }}{\lambda }}\right)}.\tag{33}\end{equation*} View Source\begin{equation*} \sup \limits _{t \rightarrow \infty }|u|\leq \frac {\lambda \alpha \left({S_{M}+\frac {\pi \Upsilon _{3}}{2\alpha }}\right)+\Upsilon _{1}}{\left({1-\frac {\kappa _{\psi }}{2}}\right)\cos \left({\frac {\kappa _{\psi }}{\lambda }}\right)}.\tag{33}\end{equation*}
Remark 4:
Since no static smooth control law can stabilize the USV system, similarly with others’ time-varying methods, we introduce the periodic function. In contrast to the previous works for the stabilization of USVs, to solve the problem of the mismatched disturbances, this article uses the piecewise programming by which the virtual states are divided into two pieces according to the value of the periodic function. By the method of enlarging and reducing, the functions in the two parts are proved to be equivalent to the positive constant and zero respectively. Note that for simplification, we perceive the sway velocity as the mismatched disturbances in this article.
B. Control Law Design
In the second step, based on the proposed virtual inputs, we need to design the actual control laws. Define \begin{align*} {\dot {u}}_{e}=&f_{1}(t)+g_{1}\tau _{1}, \tag{34a}\\ {\dot {\psi }}_{e}=&r_{e},,~{\dot {r}}_{e}=f_{2}\left ({t}\right)+g_{2}\tau _{2}, \tag{34b}\end{align*}
\begin{align*} \dot {\psi }_{d}=&\frac {\psi _{d,3}}{\psi _{d,0}},\quad \ddot {\psi }_{d} = \frac {\psi _{d,1}}{\psi _{d,0}}-\frac {\psi _{d,2}\psi _{d,3}}{\psi _{d,0}^{2}}, \\ \dot {u}_{d}=&\frac {u_{d,1}}{u_{d,0}} - \frac {~u_{d,2}u_{d,3}}{u_{d,0}^{2}}.\end{align*}
\begin{align*} \psi _{d,0}=&\lambda ^{2}\left ({\beta + y^{2} }\right)^{2} + \kappa _{\psi }^{2}y^{4}\cos ^{2}\left ({{\alpha t} }\right),\\ u_{d,0}=&cos \left ({\psi _{d} }\right)\lbrack 1 - \lambda \tan \left ({\psi _{d} }\right)\sin \left ({{\alpha t} }\right)\rbrack,\\ \psi _{d,1}=&2\alpha \lambda \kappa _{\psi }y\left ({\beta + {2y}^{2} }\right)\sin \left ({{\alpha t} }\right)y_{s} \\&+\,\alpha ^{2}\lambda \kappa _{\psi }\left ({\beta + y^{2} }\right) y^{2}\cos \left ({{\alpha t} }\right) -2\beta \lambda \kappa _{\psi }y_{s}^{2}\cos \left ({{\alpha t} }\right)\\&+\,2\alpha \beta \lambda \kappa _{\psi }{yy_{s}\sin }{\left ({{\alpha t} }\right) - 2\beta \lambda \kappa _{\psi }{y\dot {y}}_{s}\cos (\alpha t)},\\ \psi _{d,2}=&4\lambda ^{2}\left ({\beta + y^{2} }\right)yy_{s} + 4\kappa _{\psi }^{2}y^{3}{y_{s}\cos ^{2}}\left ({{\alpha t} }\right)\\&-\,\alpha \kappa _{\psi }^{2}y^{4}\sin \left ({2\alpha t }\right),\\ \psi _{d,3}=&\alpha \lambda \kappa _{\psi }\left ({\beta + y^{2} }\right)y^{2}\sin \left ({{\alpha t} }\right) - 2\beta \lambda \kappa _{\psi }y\cos \left ({{\alpha t} }\right),\\ u_{d,1}=&- \kappa _{u}\left \lbrack{ x_{s} - \lambda y_{s}\sin \left ({{\alpha t} }\right) - \lambda {\alpha y}_{s}\cos }\right \rbrack + \lambda \alpha y_{s}\cos \left ({{\alpha t} }\right)\\&-\,\lambda \alpha ^{2}y\sin \left ({{\alpha t} }\right),\\ u_{d,2}=&\lambda \alpha y\cos \left ({{\alpha t} }\right) - \kappa _{u}\lbrack x - \lambda y\sin \left ({{\alpha t} }\right)\rbrack,\\ u_{d,3}=&- \sin \left ({\psi _{d} }\right){\dot {\psi }}_{d} - \lambda cos\left ({\psi _{d} }\right){\dot {\psi }}_{d~}\sin \left ({{\alpha t} }\right)\\&-\, \alpha \lambda \sin \left ({\psi _{d} }\right)\cos \left ({{\alpha t} }\right),\end{align*}
To stabilize the system (34) in the fixed time, in this article, the following useful lemmas are introduced from [25] and [26].
Lemma 2:
Consider the following system:\begin{equation*} \dot {z}=-\alpha z^{\frac {m}{n}}-\beta z^{\frac {p}{q}},\quad z(0)=z_{0}, \tag{35}\end{equation*}
Lemma 3:
Consider the system below, \begin{equation*} \dot {z}_{1}=z_{2},~~\dot {z}_{2}=\tau, \tag{36}\end{equation*}
\begin{align*} \tau =-\dfrac {1}{2}(\alpha _{1}+3\beta _{1}z_{1}^{2})sign(\phi)-sig^{\frac {1}{2}}[\alpha _{2}\phi +\beta _{2}sig^{3}(\phi)].\! \\ \tag{37}\end{align*}
Then based on the above two lemmas, we present the following control law \begin{align*} \tau _{1}=&-\frac {1}{g_{1}}\Bigg \{\alpha sig^{p}(u_{e})+\beta sig^{q}(u_{e})+f_{1}(t)\Bigg \},\tag{38a}\\ \tau _{2}=&-\frac {1}{g_{2}}\Bigg \{\dfrac {1}{2}(\alpha _{1}+3\beta _{1}\psi _{e}^{2})sign(\varTheta)+f_{2}(t) \\&+\,sig^{\frac {1}{2}}\Big [\alpha _{2}\varTheta +\beta _{2}sig^{3}(\varTheta)\Big]\Bigg \}.\tag{38b}\end{align*}
C. Stability Analysis
Theorem 3:
Consider the USV system (1), under Assumptions 1 and 2, the control law (38) ensures properties (i) and (ii) in Theorem 2 hold. Here
Proof:
According to Lemma 2, the state
Remark 5:
The presented control law can solve matched and mismatched disturbances, which is the first of its kind. Moreover, the fixed-time higher-order observer is proposed to estimate the
According to Theorem 2, the bounds of states depend on values of parameters \begin{equation*} \left ({\frac {\pi }{\alpha } - 2\rho }\right) \frac {\kappa _{\psi }\alpha \Upsilon _{2}}{1 + \kappa _{\psi }}\frac {S^{3}}{\beta + S^{2}} = \frac {\pi }{\alpha }\Upsilon _{3}. \tag{39}\end{equation*}
\begin{equation*} {\frac {S_{M}^{3}}{\beta + S_{M}^{2}}\leq \frac {\pi (1+ \kappa _{\psi })\Upsilon _{3}}{\kappa _{\psi }}\cdot \frac {1}{\sin ^{2}\left ({{\alpha \rho } }\right)\alpha (\pi -2\rho \alpha)}.}\tag{40}\end{equation*}
\begin{equation*} \sin ^{2}\left ({{\alpha \rho } }\right)\alpha (\pi -2\rho \alpha)=\alpha \sin ^{2}\left ({\frac {\mu \pi }{2}}\right)(\pi -\mu \pi). \tag{41}\end{equation*}
Define
If \begin{equation*} \frac {S_{M}^{4}}{\beta + S_{M}^{2}}\leq \frac {\pi (1 + \kappa _{\psi })\Upsilon _{3}}{\kappa _{\psi }}\cdot \frac {1}{\sin ^{2}\left ({{\alpha \rho } }\right)\alpha (\pi -2\rho \alpha)}.\tag{42}\end{equation*}
Remark 6:
A trade-off exists in selecting the parameter
Remark 7:
The proposed fixed-time based method not only holds the faster convergence speed but also has better disturbance rejection properties and better robustness against uncertainties [27]. However, since the existence of fractional power terms, control laws lose their smoothness. The fixed-time control law is only one option in the control designer’s toolbox and we do not claim its superiority concerning the asymptotic approaches.
Numerical Simulations
Numerical simulations are given to illustrate the effectiveness of the presented method. Let the USV have the following initial conditions:\begin{align*} \lbrack x(0),y(0),\psi (0),u(0),v(0),r(0)\rbrack ^{T} = \lbrack 3,3,0,0,0,0\rbrack ^{T}.\!\! \\\tag{43}\end{align*}
A. Stability Analysis
The stability performance of the USV with the proposed controller is shown in Figures 5(a) and 5(b). It is clear that states
Trajectories of the position states, yaw angle, velocities and inputs with no disturbance.
To further illustrate the stability of the USV system, we consider the case in which the disturbances can be presented as
The trajectories of states
Trajectories of the position states, yaw angle, velocities and inputs with disturbances.
Trajectories of the position states, yaw angle, velocities and inputs with disturbances and measurement noises.
B. Estimation Error
Observer parameters are chosen as
For convenience, we define a sum of estimation errors such as
C. Comparisons
To evaluate the effectiveness of our method, we consider comparisons of the performance between the proposed control law and approaches in [6], [15] under different initial conditions
Define the performance
To be specific, consider the comparison of our method and [6] under case C.2. Because the performance gap between the two methods does not affect the clarity of figures to display information, the performance and energy consumption indicators in the form of conventional square sums are used here. In this case, we redefine the performance index function and energy consumption function as:
Conclusion and Future Work
In this article, based on back-stepping method, the virtual yaw angle and surge velocity are presented to stabilize the USV into the bounded region. The bound of the USV system depends on the parameters of virtual states. Based on induction method, the higher-order fixed-time observer is proposed to estimate disturbances in the desired time. So that after the settling time, unknown disturbances can be seen as measurable. By presented observers, the fixed-time control law is proposed to drive the yaw angle and surge velocity to designed virtual states. This control law is proved to ensure the USV system bounded.
As actuator saturation due to mechanical constraints may have significant impacts on the system transient behavior and even stability, stabilization of USVs subject to actuator saturation is still an open problem. Energy efficient optimal control of USVs is another critical issue worthy of investigation in the future.
ACKNOWLEDGMENT
The authors would like to thank the associate editor and reviewers for all their very valuable suggestions and comments which have helped to improve the presentation and quality of the paper.