Discriminative Joint Probability Maximum Mean Discrepancy (DJP-MMD) for Domain Adaptation | IEEE Conference Publication | IEEE Xplore

Discriminative Joint Probability Maximum Mean Discrepancy (DJP-MMD) for Domain Adaptation


Abstract:

Maximum mean discrepancy (MMD) has been widely adopted in domain adaptation to measure the discrepancy between the source and target domain distributions. Many existing d...Show More

Abstract:

Maximum mean discrepancy (MMD) has been widely adopted in domain adaptation to measure the discrepancy between the source and target domain distributions. Many existing domain adaptation approaches are based on the joint MMD, which is computed as the (weighted) sum of the marginal distribution discrepancy and the conditional distribution discrepancy; however, a more natural metric may be their joint probability distribution discrepancy. Additionally, most metrics only aim to increase the transferability between domains, but ignores the discriminability between different classes, which may result in insufficient classification performance. To address these issues, discriminative joint probability MMD (DJP-MMD) is proposed in this paper to replace the frequently-used joint MMD in domain adaptation. It has two desirable properties: 1) it provides a new theoretical basis for computing the distribution discrepancy, which is simpler and more accurate; 2) it increases the transferability and discriminability simultaneously. We validate its performance by embedding it into a joint probability domain adaptation framework. Experiments on six image classification datasets demonstrated that the proposed DJP-MMD can outperform traditional MMDs.
Date of Conference: 19-24 July 2020
Date Added to IEEE Xplore: 28 September 2020
ISBN Information:

ISSN Information:

Conference Location: Glasgow, UK

Contact IEEE to Subscribe

References

References is not available for this document.