Abstract:
The independent operation of mobile and fixed network segments is one of the main barriers that prevents improving network performance while reducing capital expenditures...Show MoreMetadata
Abstract:
The independent operation of mobile and fixed network segments is one of the main barriers that prevents improving network performance while reducing capital expenditures coming from overprovisioning. In particular, a coordinated dynamic network operation of both network segments is essential to guarantee end-to-end Key Performance Indicators (KPI), on which new network services rely on. To achieve such dynamic operation, accurate estimation of end-to-end KPIs is needed to trigger network reconfiguration before performance degrades. In this paper, we present a methodology to achieve an accurate, scalable, and predictive estimation of end-to-end KPIs with sub-second granularity near real-time in converged fixed-mobile networks. Specifically, we extend our CURSA-SQ methodology for mobile network traffic analysis, to enable converged fixed-mobile network operation. CURSA-SQ combines simulation and machine learning fueled with real network monitoring data. Numerical results validate the accuracy, robustness, and usability of the proposed CURSA-SQ methodology for converged fixed-mobile network scenarios.
Date of Conference: 19-23 July 2020
Date Added to IEEE Xplore: 22 September 2020
ISBN Information: