Abstract:
X-ray detectors currently employed in dosimetry suffer from a number of drawbacks including the inability to conform to curved surfaces and being limited to smaller dimen...Show MoreMetadata
Abstract:
X-ray detectors currently employed in dosimetry suffer from a number of drawbacks including the inability to conform to curved surfaces and being limited to smaller dimensions due to available crystal sizes. In this study, a hybrid X-ray detector (HXD) has been developed which offers real-time response with added advantages of being highly sensitive over a broad energy range, mechanically flexible, relatively inexpensive, and able to be fabricated over large areas on the desired surface. The detector comprises an organic matrix embedded with high-atomic-number inorganic nanoparticles which increase the radiation attenuation and within the device allows for simultaneous transfer of electrons and holes. The HXD delivers a peak response of 14 nA cm-2, which corresponds to a sensitivity of 30.8 μC Gy-1 cm-2, under the exposure of 6-MV hard X-rays generated by a medical linear accelerator. The angular dependence of the HXD has been studied, which offers a maximum variation of 26% in the posterior versus lateral beam directions. The flexible HXD can be conformed to the human body shape and is expected to eliminate variations due to source-to-skin distance with reduced physical evaluation complexities.
Published in: IEEE Transactions on Nuclear Science ( Volume: 67, Issue: 10, October 2020)