Abstract:
This paper proposes a front pedestrian crossing and vehicle cut-in prediction system based on 3D convolution behavior prediction network. The proposed design improves the...Show MoreMetadata
Abstract:
This paper proposes a front pedestrian crossing and vehicle cut-in prediction system based on 3D convolution behavior prediction network. The proposed design improves the original 3D convolution network (C3D) to make behavior recognition network have the ability of object localization, which is important to detect multiple moving object behaviors. The proposed system is implemented on the embedded system in real-time, which achieves 20 frames per second when it is deployed on NVIDIA Jetson AGX Xavier and possesses over 92.8% accuracy for pedestrian crossing and 94.3% accuracy for vehicle cut-in behavior detection.
Date of Conference: 09-12 August 2020
Date Added to IEEE Xplore: 02 September 2020
ISBN Information: