Loading [a11y]/accessibility-menu.js
Random Forest-based Algorithm for Sleep Spindle Detection in Infant EEG | IEEE Conference Publication | IEEE Xplore

Random Forest-based Algorithm for Sleep Spindle Detection in Infant EEG


Abstract:

Sleep spindles are associated with normal brain development, memory consolidation and infant sleep-dependent brain plasticity and can be used by clinicians in the assessm...Show More

Abstract:

Sleep spindles are associated with normal brain development, memory consolidation and infant sleep-dependent brain plasticity and can be used by clinicians in the assessment of brain development in infants. Sleep spindles can be detected in EEG, however, identifying sleep spindles in EEG recordings manually is very time-consuming and typically requires highly trained experts. Research on the automatic detection of sleep spindles in infant EEGs has been limited to-date. In this study, we present a novel supervised machine learning-based algorithm to detect sleep spindles in infant EEG recordings. EEGs collected from 141 ex-term born infants and 6 ex-preterm born infants, recorded at 4 months of age (adjusted), were used to train and test the algorithm. Sleep spindles were annotated by experienced clinical physiologists as the gold standard. The dataset was split into training (81 ex-term), validation (30 ex-term), and testing (30 ex-term + 6 ex-preterm) set. 15 features were selected for input into a random forest algorithm. Sleep spindles were detected in the ex-term infant EEG test set with 92.1% sensitivity and 95.2% specificity. For ex-preterm born infants, the sensitivity and specificity were 80.3% and 91.8% respectively. The proposed algorithm has the potential to assist researchers and clinicians in the automated analysis of sleep spindles in infant EEG.
Date of Conference: 20-24 July 2020
Date Added to IEEE Xplore: 27 August 2020
ISBN Information:

ISSN Information:

PubMed ID: 33017930
Conference Location: Montreal, QC, Canada

Contact IEEE to Subscribe

References

References is not available for this document.