Subjective QoE Evaluation, Analysis and Machine Learning-based QoE Predictions Framework.
Abstract:
360-degree video provides an immersive experience to end-users through Virtual Reality (VR) Head-Mounted-Displays (HMDs). However, it is not trivial to understand the Qua...Show MoreMetadata
Abstract:
360-degree video provides an immersive experience to end-users through Virtual Reality (VR) Head-Mounted-Displays (HMDs). However, it is not trivial to understand the Quality of Experience (QoE) of 360-degree video since user experience is influenced by various factors that affect QoE when watching a 360-degree video in VR. This manuscript presents a machine learning-based QoE prediction of 360-degree video in VR, considering the two key QoE aspects: perceptual quality and cybersickness. In addition, we proposed two new QoE-affecting factors: user's familiarity with VR and user's interest in 360-degree video for the QoE evaluation. To aim this, we first conduct a subjective experiment on 96 video samples and collect datasets from 29 users for perceptual quality and cybersickness. We design a new Logistic Regression (LR) based model for QoE prediction in terms of perceptual quality. The prediction accuracy of the proposed model is compared against well-known supervised machine-learning algorithms such as k-Nearest Neighbors (kNN), Support Vector Machine (SVM), and Decision Tree (DT) with respect to accuracy rate, recall, f1-score, precision, and mean absolute error (MAE). LR performs well with 86% accuracy, which is in close agreement with subjective opinion. The prediction accuracy of the proposed model is then compared with existing QoE models in terms of perceptual quality. Finally, we build a Neural Network-based model for the QoE prediction in terms of cybersickness. The proposed model performs well against the state of the art QoE prediction methods in terms of cybersickness.
Subjective QoE Evaluation, Analysis and Machine Learning-based QoE Predictions Framework.
Published in: IEEE Access ( Volume: 8)