Abstract:
Deep learning models are traditionally used in big data scenarios. When there is not enough training data to fit a large model, transfer learning re-purpose the learned f...Show MoreMetadata
Abstract:
Deep learning models are traditionally used in big data scenarios. When there is not enough training data to fit a large model, transfer learning re-purpose the learned features from an existing model and re-train the lower layers for the new task. Bayesian inference techniques can be used to capture the uncertainty of the new model but it comes with a high computational cost. In this paper, the run time performance of an Stochastic Gradient Markov Chain Monte Carlo method using two different architectures is compared, namely GPU and multi-core CPU. As opposed to the widely usage of GPUs for deep learning, significant advantages from using modern CPU architectures.
Date of Conference: 01-03 April 2020
Date Added to IEEE Xplore: 07 May 2020
ISBN Information:
Laboratorio de Procesamiento de Información Geoespacial, Universidad Católica del Maule, Chile
Centro de Innovación en Ingeniería Aplicada, Universidad Católica del Maule, Chile
German Research Center for Artificial Intelligence, Robotics Innovation Center, Germany
Laboratorio de Procesamiento de Información Geoespacial, Universidad Católica del Maule, Chile
Centro de Innovación en Ingeniería Aplicada, Universidad Católica del Maule, Chile
German Research Center for Artificial Intelligence, Robotics Innovation Center, Germany