Abstract:
We demonstrate static and dynamic bulk refractive index measurement using slot-waveguide based ring resonator. A detailed simulation is performed to optimize the slot-wav...Show MoreMetadata
Abstract:
We demonstrate static and dynamic bulk refractive index measurement using slot-waveguide based ring resonator. A detailed simulation is performed to optimize the slot-waveguide geometry for maximum sensitivity. The on-chip measurements are performed using a slot waveguide ring resonator by applying aqueous solutions of acids and bases at different concentrations. Based on these measurements, we derive a relation of refractive index change per unit change in concentration of the liquids in water. We experimentally measured a maximum sensitivity of 476 nm/RIU, enabling a limit of detection (LOD) of 1.05×10-5 RIU. Finally, we demonstrate dynamic refractive index on-chip measurement by diluting potassium bicarbonate with hydrogen peroxide.
Published in: IEEE Sensors Journal ( Volume: 20, Issue: 11, 01 June 2020)
Funding Agency:
References is not available for this document.
Select All
1.
W. Bogaerts, “Silicon-on-Insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 1, pp. 33–44, Jan./Feb. 2010.
2.
K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express, vol. 15, no. 12, pp. 7610–7615, 2007.
3.
E. Luan, H. Shoman, D. Ratner, K. Cheung, and L. Chrostowski, “Silicon photonic biosensors using label-free detection,” Sensors, vol. 18, no. 10, p. 3519, Oct. 2018.
4.
D. Thomson, “Roadmap on silicon photonics,” J. Opt., vol. 18, no. 7, 2016, Art. no. 073003.
5.
D.-X. Xu, “Silicon photonic integration platform—Have we found the sweet spot? ” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 4, pp. 189–205, Jul. 2014.
6.
L. Chrostowski, “Silicon photonic resonator sensors and devices,” Proc. SPIE, vol. 8236, Feb. 2012, Art. no. 823620.
7.
V. M. Passaro, B. Troia, M. La Notte, and F. De Leonardis, “Chemical sensors based on photonic structures,” in Advanced Chemical Sensors. Rijeka, Croatia : InTech, 2012.
8.
P. Steglich, M. Hülsemann, B. Dietzel, and A. Mai, “Optical biosensors based on Silicon-On-Insulator ring resonators: A review,” Molecules, vol. 24, no. 3, p. 519, Jan. 2019.
9.
C. A. Barrios, “Analysis and modeling of a silicon nitride slot-waveguide microring resonator biochemical sensor,” in Proc. Opt. Sensors, May 2009, Art. no. 735605.
10.
P. R. Prasad, S. K. Selvaraja, and M. M. Varma, “High precision measurement of intensity peak shifts in tunable cascaded microring intensity sensors,” Opt. Lett., vol. 41, no. 14, pp. 3153–3156, Jul. 2016.
11.
W. Bogaerts, “Silicon microring resonators,” Laser Photon. Rev., vol. 6, no. 1, pp. 47–73, Jan. 2012.
12.
P. R. Prasad, S. K. Selvaraja, and M. Varma, “Real-time compensation of errors in refractive index shift measurements of microring sensors using thermo-optic coefficients,” Opt. Express, vol. 26, no. 10, pp. 13461–13473, May 2018.
13.
M. Iqbal, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 3, pp. 654–661, May/Jun. 2010.
14.
T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express, vol. 18, no. 22, pp. 22747–22761, Oct. 2010.
15.
J. Milvich, D. Kohler, W. Freude, and C. Koos, “Surface sensing with integrated optical waveguides: A design guideline,” Opt. Express, vol. 26, no. 16, pp. 19885–19906, Jul. 2018.
16.
T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J., vol. 1, no. 3, pp. 197–204, Sep. 2009.
17.
D. M. Kita, J. Michon, S. G. Johnson, and J. Hu, “Are slot and sub-wavelength grating waveguides better than strip waveguides for sensing? ” Optica, vol. 5, no. 9, pp. 1046–1054, Aug. 2018.
18.
V. Mere, R. Kallega, and S. K. Selvaraja, “Efficient and tunable strip-to-slot fundamental mode coupling,” Opt. Express, vol. 26, no. 1, pp. 438–444, Jan. 2018.
19.
C. A. Barrios, “Slot-waveguide biochemical sensor,” Opt. Lett., vol. 32, no. 21, pp. 3080–3082, Oct. 2007.
20.
Photond. Fimmwave. Accessed: Jan. 15, 2020. [Online]. Available: https://www.photond.com/products/fimmwave.htm
21.
V. Mere and S. K. Selvaraja, “Method to fabricate taper waveguide using fixed-beam moving stage electron-beam lithography,” J. Micro/Nanolithography, MEMS, MOEMS, vol. 18, no. 04, pp. 1–4, Oct. 2019, doi: 10.1117/1.JMM.18.4.043503.
22.
A. Densmore, “Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response,” Opt. Lett., vol. 33, no. 6, pp. 596–598, Mar. 2008.
23.
A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett., vol. 94, no. 6, Feb. 2009, Art. no. 063503.
24.
J. Jágerská, H. Zhang, Z. Diao, N. L. Thomas, and R. Houdré, “Refractive index sensing with an air-slot photonic crystal nanocavity,” Opt. Lett., vol. 35, no. 15, pp. 2523–2525, Jul. 2010.
25.
J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an abbe refractometer,” Meas. Sci. Technol., vol. 8, no. 6, pp. 601–605, Jan. 1999.
26.
D. E. Richardson, H. Yao, K. M. Frank, and D. A. Bennett, “Equilibria, kinetics, and mechanism in the bicarbonate activation of hydrogen peroxide: Oxidation of sulfides by peroxymonocarbonate,” J. Amer. Chem. Soc., vol. 122, no. 8, pp. 1729–1739, Mar. 2000.