DASNet: Dynamic Activation Sparsity for Neural Network Efficiency Improvement | IEEE Conference Publication | IEEE Xplore

DASNet: Dynamic Activation Sparsity for Neural Network Efficiency Improvement


Abstract:

To improve the execution speed and efficiency of neural networks in embedded systems, it is crucial to decrease the model size and computational complexity. In addition t...Show More

Abstract:

To improve the execution speed and efficiency of neural networks in embedded systems, it is crucial to decrease the model size and computational complexity. In addition to conventional compression techniques, e.g., weight pruning and quantization, removing unimportant activations can reduce the amount of data communication and the computation cost. Unlike weight parameters, the pattern of activations is directly related to input data and thereby changes dynamically. To regulate the dynamic activation sparsity (DAS), in this work, we propose a generic low-cost approach based on winners-take-all (WTA) dropout technique. The network enhanced by the proposed WTA dropout, namely DASNet, features structured activation sparsity with an improved sparsity level. Compared to the static feature map pruning methods, DASNets provide better computation cost reduction. The WTA technique can be easily applied in deep neural networks without incurring additional training variables. Our experiments on various networks and datasets present significant run-time speedups with negligible accuracy loss.
Date of Conference: 04-06 November 2019
Date Added to IEEE Xplore: 13 February 2020
ISBN Information:

ISSN Information:

Conference Location: Portland, OR, USA

Contact IEEE to Subscribe

References

References is not available for this document.