Loading [MathJax]/extensions/MathMenu.js
Multi-Similarity Loss With General Pair Weighting for Deep Metric Learning | IEEE Conference Publication | IEEE Xplore

Multi-Similarity Loss With General Pair Weighting for Deep Metric Learning


Abstract:

A family of loss functions built on pair-based computation have been proposed in the literature which provide a myriad of solutions for deep metric learning. In this pa-p...Show More

Abstract:

A family of loss functions built on pair-based computation have been proposed in the literature which provide a myriad of solutions for deep metric learning. In this pa-per, we provide a general weighting framework for under-standing recent pair-based loss functions. Our contributions are three-fold: (1) we establish a General Pair Weighting (GPW) framework, which casts the sampling problem of deep metric learning into a unified view of pair weighting through gradient analysis, providing a powerful tool for understanding recent pair-based loss functions; (2) we show that with GPW, various existing pair-based methods can be compared and discussed comprehensively, with clear differences and key limitations identified; (3) we propose a new loss called multi-similarity loss (MS loss) under the GPW,which is implemented in two iterative steps (i.e., mining and weighting). This allows it to fully consider three similarities for pair weighting, providing a more principled approach for collecting and weighting informative pairs. Finally, the proposed MS loss obtains new state-of-the-art performance on four image retrieval benchmarks, where it outperforms the most recent approaches, such as ABE[14] and HTL[4], by a large margin, e.g.,60.6%→65.7%on CUB200,and 80.9%→88.0%on In-Shop Clothes Retrieval datasetat Recall@1.
Date of Conference: 15-20 June 2019
Date Added to IEEE Xplore: 09 January 2020
ISBN Information:

ISSN Information:

Conference Location: Long Beach, CA, USA

Contact IEEE to Subscribe

References

References is not available for this document.