Loading [MathJax]/extensions/MathMenu.js
Hierarchical Deep Learning Machine for Power System Online Transient Stability Prediction | IEEE Journals & Magazine | IEEE Xplore

Hierarchical Deep Learning Machine for Power System Online Transient Stability Prediction


Abstract:

This paper develops a hierarchical deep learning machine (HDLM) to efficiently achieve both quantitative and qualitative online transient stability prediction (TSP). For ...Show More

Abstract:

This paper develops a hierarchical deep learning machine (HDLM) to efficiently achieve both quantitative and qualitative online transient stability prediction (TSP). For the sake of improving its online efficiency, multiple generators' fault-on trajectories as well as the two closest data-points in pre-/post-fault stages are acquired by PMUs to form its raw inputs. An anti-noise graphical transient characterization technique is tactfully designed to transform multiplex trajectories into 2-D images, within which system-wide transients are concisely described. Then, following the divide-and-conquer philosophy, the HDLM trains a two-level convolutional neural network (CNN) based regression model. With stability margin regressions hierarchically refined, it manages to perform reliable and adaptive online TSP almost immediately after fault clearance. Test results on the IEEE 39-bus test system and the real-world Guangdong Power Grid in South China demonstrate the HDLM's superior performances on both stability status and stability margin predictions.
Published in: IEEE Transactions on Power Systems ( Volume: 35, Issue: 3, May 2020)
Page(s): 2399 - 2411
Date of Publication: 03 December 2019

ISSN Information:

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.