Introduction
Control of uncertain nonlinear systems is one of the most important issues in control theory. Among many different methods developed in the past few decades, the active disturbance rejection control (ADRC), first proposed by Han [1], is an efficient method to deal with uncertain nonlinear systems. For its ability in dealing with a vast range of uncertainties, simplicity in engineering implementation, and superior performance in practice, ADRC is becoming an emerging technology in control engineering [2]. The last two decades have witnessed ADRC’s success in many industrial applications, including speed control of induction motor [3] and permanent magnet synchronous motor [4], fan control in server [5], air-fuel ratio control in gasoline engines [6], hydraulic servo systems [7]. In recent years, the theoretical research has been gradually developed. In [8], [9], the characteristics of the linear ADRC (LADRC), first proposed by Gao [10], are comprehensively studied both in time-domain and frequency-domain. In [11]–[13], the convergence of nonlinear extended state observer (NLESO) and nonlinear ADRC (NLADRC) are proved, respectively. Several modified ADRCs for nonlinear uncertain systems with time delay are studied and compared with theoretical analysis in [14].
Most of the existing ADRC studies consider that the considered systems are affine-in-control, i.e., the control inputs appear linearly in the control systems, especially in the known nominal models. However, there are many practical control systems, such as the inverted pendulum [15], and flight control system [16], [17], which cannot be expressed in an affine-in-control form. Thus, it is necessary to study how to design ADRC for uncertain nonaffine nonlinear systems.
Various approaches for nonaffine uncertain nonlinear systems have been proposed recently [18]–[25]. An output feedback controller is proposed for uncertain, single-input-single-output nonaffine input systems using neural network observers together with dynamic inversion in [18]. Using neural networks to approximate the nonaffine nominal model and uncertainties, the stability of the closed-loop system can be proved [19], [20]. All of these methods based on neural networks require heavy computations and good prior knowledge of the system. To deal with heavy computation burdens, an extended high-gain observer (EHGO) is used to estimate system states and uncertainties instead of neural networks. And dynamic inversion is used to deal with the nonaffine inputs and input uncertainties based on the estimates provided by EHGO in [17], [21]. Based on the control design method for feedback linearization systems in [21], an ADRC design method, combining NLESO and dynamic inversion, is proposed for uncertain nonaffine strict-feedback nonlinear systems in [22]. In [23], an indirect dynamic inversion approach is developed for uncertain nonaffine strict-feedback nonlinear systems. However, the model uncertainties estimation provided by EHGO is not used and information of initial states are required in the indirect dynamic inversion approach. In [24], an observer-based adaptive fuzzy method is proposed to control an uncertain nonaffine feedback linearization system. Similarly, an adaptive fuzzy controller is designed for a class of uncertain nonaffine feedback linearization systems based on the passivity theorem in [25].
In classical ADRC framework, the choice of nominal value
This paper presents a LADRC design method for a class of uncertain nonaffine strict-feedback nonlinear systems. Reduced-order linear extended state observer (RLESO) and dynamic inversion are combined together with a multi-time-scale structure to deal with model uncertainties and nonaffine inputs. Numerical simulation and experimental results demonstrate the effectiveness of the proposed method. The contributions of this paper can be summarized as follows.
We extend the applications of dynamic inversion from feedback linearization systems in [21], [24], [25] to a more general nonaffine systems with strict feedback form.
Compared with the indirect dynamic inversion approach for strict-feedback nonlinear systems in [23], a novel design method is proposed, where the uncertainties estimation of the system is adopted effectively and the requirements of the initial states can be removed. The stability and performance analysis for the multi-time-scale structure is rigorously studied via the singular perturbation method.
The proposed LADRC provides an extra ADRC design method to handle the difficulty of the choice of nominal value of control gain in the classical ADRC framework.
This paper is organized as follows. In Section II, the problem is formulated for a class of uncertain, nonaffine, nonlinear systems. In Section III, the LADRC design is presented. Section IV provides the stability and performance analysis. Comparative simulation and experimental results with the existing approaches are presented in Section V. Concluding remarks are provided in Section VI.
Problem Statements
Consider a class of uncertain nonaffine nonlinear systems with strict-feedback form:\begin{align*} {\dot x_{i}}=&{x_{i + 1}} + {f_{i}}({x_{1}}, \cdots,{x_{i}}), \\&i = 1,2, \cdots,n - 1,\quad {x_{i}}(0) = {x_{i0}}, \\ {\dot x_{n}}=&{\bar f_{n}}(x,z,w,u),\quad {x_{n}}(0) = {x_{n0}}, \\ \dot z=&{f_{0}}(x,z,w),\quad z(0) = {z_{0}}, \\ y=&{x_{1}}\tag{1}\end{align*}
\begin{equation*}{\bar f_{n}}(x,z,w,u) = {f_{n}}(x,u) + {\sigma _{f_{n}}}(x,z,w,u),\end{equation*}
The goal of this paper is to design the control input \begin{align*} {\dot r_{i}}=&{r_{i + 1}} + {f_{i}}({x_{1}}, \cdots,{x_{i}}), \\&i = 1,2, \cdots,n - 1,\quad {r_{i}}(0) = {r_{i0}}, \\ {\dot r_{n}}=&{f_{rn}}(t),\quad {r_{n}}(0) = {r_{n0}},\tag{2}\end{align*}
Let \begin{align*} {e_{i}}=&{x_{i}} - {r_{i}},\quad e = {\left [{ {\begin{array}{cccc} {e_{1}}&\quad {e_{2}}&\quad \cdots &\quad {e_{n}} \end{array}} }\right]^{T}},\\ A=&\left [{ {\begin{array}{cccc} 0&\quad 1&\quad {}&\quad {}\\ \vdots &\quad {}&\quad \ddots &\quad {}\\ 0&\quad {}&\quad {}&\quad 1\\ 0&\quad 0&\quad \cdots &\quad 0 \end{array}} }\right],\quad B = \left [{ {\begin{array}{c} 0\\ \vdots \\ 0\\ 1 \end{array}} }\right],\end{align*}
\begin{align*} {\dot e_{i}}=&{e_{i + 1}},i = 1,2, \cdots,n - 1, \\ {\dot e_{n}}=&- Le + F(x,z,w,u,{f_{rn}}(t)),\tag{3}\end{align*}
\begin{equation*}F(x,z,w,u,{f_{rn}}(t)) = {\bar f_{n}}(x,z,w,u) - {f_{rn}}(t) + Le.\end{equation*}
The following mild assumptions are made for the system (1) and error dynamics (3), and they are common in the relevant literature.
Assumption 1:
Remark 1:
Assumption 1 is a rational assumption, which is also presented in [26].
Assumption 2:
The functions \begin{align*}&\hspace {-2pc}\left |{ {f_{i}({x_{1}} + {\delta _{1}}, \cdots,{x_{i}} + {\delta _{i}}) - {f_{i}}({x_{1}}, \cdots,{x_{i}})} }\right | \\&\le {k_{i}}\sum \limits _{j = 1}^{i} {\left |{ {\delta _{j}} }\right |},\quad \forall {\delta _{j}} \in \mathbb {R},\\&\hspace {-2pc}\left |{ {f_{n}({x_{1}} + {\delta _{1}}, \cdots,{x_{n}} + {\delta _{n}},u) - {f_{n}}({x_{1}}, \cdots,{x_{n}},u)} }\right |\\&\le {k_{n}}\sum \limits _{j = 1}^{n} {\left |{ {\delta _{j}} }\right |},\quad \forall {\delta _{j}} \in \mathbb {R}, \\&\hspace {-2pc}\left |{ {{\sigma _{f_{n}}}(x,z,w,u + {\delta _{u}}) - {\sigma _{f_{n}}}(x,z,w,u)} }\right | \\&\le {k_{u}}\left |{ {\delta _{u}} }\right |,\quad \forall {\delta _{u}} \in \mathbb {R}.\end{align*}
Remark 2:
Assumption 2 is a Lipschitz-like condition, which guarantees the existence of solutions for (1).
Assumption 3:
There exists a positive definite function \begin{align*} {\alpha _{1}}(\left \|{ z }\right \|)\le&{V_{z}}(z) \le {\alpha _{2}}(\left \|{ z }\right \|), \\ {\dot V_{z}}\le&0,\quad { {for}}\;\left \|{ z }\right \| \ge {\alpha _{3}}(\left \|{ {x,w} }\right \|),\end{align*}
Remark 3:
Assumption 3 implies that the
Assumption 4:
There is a unique continuously differentiable function \begin{equation*}F(x,z,w,{u_{r}},{f_{rn}}(t)) = 0,\end{equation*}
\begin{equation*}sK(x,{f_{rn}}(t))F(x,z,w,s + {u_{r}},{f_{rn}}(t)) \ge \beta {s^{2}},\quad \beta > 0,\end{equation*}
\begin{equation*}\left |{ {K(x + {\delta _{x}},{f_{rn}}(t)) - K(x,{f_{rn}}(t))} }\right | \le {k_{b}}\left \|{ {\delta _{x}} }\right \|,\end{equation*}
Remark 4:
Assumption 4 guarantees the uniform controllability of the system (1), and the requirement of \begin{align*}&\hspace {-2pc}{sK\left [{ {\bar f_{n}(x,z,w,s + {u_{r}}) - {f_{rn}}(t) + Le} }\right]} \\=&sign\left ({{\frac {{\partial {\bar f_{n}}}}{\partial u}(x,z,w,u)} }\right)s{{[}}k_{u}^{*}s + {\bar f_{n}}(x,z,w,{u_{r}}) \\&-\, {f_{rn}}(t) + Le{{]}} \\\ge&\left |{ {k_{u}^{*}} }\right |{s^{2}},\end{align*}
LADRC Design
A novel LADRC design method for the system (1) will be introduced, and we use dynamic inversion to deal with nonaffine inputs and input uncertainties.
Let \begin{align*} F(x,z,w,u,{f_{rn}}(t))=&{\bar f_{n}}(x,z,w,u) - {f_{rn}}(t) + Le \\=&{f_{n}}(x,u) + {\sigma _{f_{n}}}(x,z,w,u)\\&- \,{f_{rn}}(t) + Le \\\stackrel { \Delta } =&{F_{c}}(x,{\sigma _{f_{n}}},u,{f_{rn}}(t)).\end{align*}
\begin{equation*} \mu \dot u = - K(x,{f_{rn}}(t)){F_{c}}(x,{\sigma _{f_{n}}},u,{f_{rn}}(t)),\quad u(0) = {u_{0}},\tag{4}\end{equation*}
The closed-loop system can be expressed as \begin{align*} \dot e=&(A - BL)e + B{F_{c}}(x,{\sigma _{f_{n}}},s + u_{r},{f_{rn}}(t)), \\ \dot z=&{f_{0}}(x,z,w), \\ \mu \dot s=&- K{F_{c}}(x,{\sigma _{f_{n}}},s + u_{r},{f_{rn}}(t)) - \mu {\phi _{d}}.\tag{5}\end{align*}
Let \begin{equation*}{V_{s}} = \frac {1}{2}{s^{2}},\quad {V_{e}} = {e^{T}}{P_{e}}e,\end{equation*}
\begin{align*} {\dot V_{s}}\le&- \left ({{\frac {\beta }{\mu }} }\right){s^{2}} + \left |{ s }\right |\left |{ {\phi _{d}} }\right |, \\ {\dot V_{e}}=&- {e^{T}}e + 2{e^{T}}{P_{e}}B{F_{c}}(x,{\sigma _{f_{n}}},s + u_{r},{f_{rn}}(t)), \\\le&- {\left \|{ e }\right \|^{2}} + {k_{e}}\left |{ s }\right |\left \|{ e }\right \|,\end{align*}
\begin{equation*}{\Omega _{b}} = \left \{{ {V_{e} \le {b_{1}}} }\right \} \times \left \{{ {V_{z} \le {c_{0}}} }\right \} \times \left \{{ {V_{s} \le {b_{2}}} }\right \}\end{equation*}
In output feedback control and \begin{align*} {\dot z_{i}}=&- \frac {{{\alpha _{i - 1}}}}{{{\varepsilon ^{i - 1}}}}\left ({{z_{2} + {f_{1}}({x_{1}})} }\right) + {z_{i + 1}} \\&+\, {f_{i}}({x_{1}},{\hat x_{2}}, \cdots,{\hat x_{i}}) + \left ({{\frac {\alpha _{i}}{\varepsilon ^{i}} - \frac {{\alpha _{1}{\alpha _{i - 1}}}}{\varepsilon ^{i}}} }\right){x_{1}}, \\ {\hat x_{i}}=&{z_{i}} + \frac {{{\alpha _{i - 1}}}}{{{\varepsilon ^{i - 1}}}}{x_{1}}, \\&i = 2,3, \cdots,n,\quad {z_{i}}(0) = - {\beta _{i - 1}}{x_{1}}(0), \\ {\dot z_{n + 1}}=&- \frac {\alpha _{n}}{\varepsilon ^{n}}\left ({{z_{2} + {f_{1}}({x_{1}})} }\right) - \frac {{\alpha _{1}{\alpha _{n}}}}{{{\varepsilon ^{n + 1}}}}{x_{1}}, \\ {\hat \sigma _{f_{n}}}=&{z_{n + 1}} + \frac {\alpha _{n}}{\varepsilon ^{n}}{x_{1}},\quad {z_{n + 1}}(0) = - {\beta _{n}}{x_{1}}(0),\tag{6}\end{align*}
\begin{equation*}{s^{n}} + {\alpha _{1}}{s^{n-1}} + \cdots + {\alpha _{n-1}}s + {\alpha _{n}}\end{equation*}
\begin{align*} {\dot z_{2}}=&- \frac {\alpha _{1}}{\varepsilon }\left ({{z_{2} + {f_{1}}({x_{1}})} }\right) - \frac {\alpha _{1}^{2}}{\varepsilon ^{2}}{x_{1}}, \\ {\hat \sigma _{f_{1}}}=&{z_{2}} + \frac {\alpha _{1}}{\varepsilon }{x_{1}},\quad {z_{2}}(0) = - {\beta _{1}}{x_{1}}(0).\tag{7}\end{align*}
Since the dynamic inversion uses the estimates provided by the RLESO, \begin{align*}&\hspace {-1pc}\mu \dot u = - K({\hat x_{s}},{f_{rn}}(t))\left [{ {f_{n}({\hat x_{s}},u) + {\hat \sigma _{f_{n}s}} - {f_{rn}}(t) + L{\hat e_{s}}} }\right], \\&\quad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad u(0) = {u_{0}},\tag{8}\end{align*}
\begin{align*} {\hat x_{s}}=&{\left [{ {x_{1},{M_{2}}sat\left ({{\frac {\hat x_{2}}{M_{2}}} }\right), \cdots,{M_{n}}sat\left ({{\frac {\hat x_{n}}{M_{n}}} }\right)} }\right]^{T}}, \\ {\hat \sigma _{f_{n}s}}=&{M_\sigma }sat\left ({{\frac {{{\hat \sigma _{f_{n}}}}}{M_\sigma }} }\right),\\ \hat e_{s}=&\hat x_{s} - r,\end{align*}
Main Results
In this section, we will prove that in the presence of uncertainties, the output feedback control (6) and (8) can force the system (1) to follow the target system (2).
A. n \gt 1
Consider fast variables \begin{equation*} {\eta _{i}} = \frac {{x_{i} - {\hat x_{i}}}}{{{\varepsilon ^{n + 1 - i}}}},i = 2, \cdots,n,\quad {\eta _{n + 1}} = {\sigma _{f_{n}}} - {\hat \sigma _{f_{n}}},\tag{9}\end{equation*}
\begin{align*} \dot e=&(A - BL)e + {\delta _{f}} \\&+\, B\left [{ {\bar f_{n}(x,z,w,s + {u_{r}}) - {f_{rn}}(t) + Le} }\right], \\ \dot z=&{f_{0}}(z,x,w), \\ \mu \dot s=&- K\left [{ {f_{n}({\hat x_{s}},s + {u_{r}}) + {\hat \sigma _{f_{n}s}} - {f_{rn}}(t) + L\hat e} }\right] - \mu {\phi _{d}}, \\ \varepsilon \dot \eta=&\Lambda \eta + {\delta _{f/\varepsilon }} + {B}(\varepsilon /\mu){\psi _{1}},\tag{10}\end{align*}
\begin{align*} \Lambda=&\left [{ {\begin{array}{ccccc} { - {\alpha _{1}}}&\quad 1&\quad 0&\quad \cdots &\quad 0\\ { - {\alpha _{2}}}&\quad 0&\quad 1&\quad \ddots &\quad \vdots \\ \vdots &\quad \vdots &\quad \ddots &\quad \ddots &\quad 0\\ { - {\alpha _{n-1}}}&\quad 0&\quad \cdots &\quad 0&\quad 1\\ { - {\alpha _{n}}}&\quad 0&\quad 0&\quad \cdots &\quad 0 \end{array}} }\right], \\ {\delta _{f}}=&\left [{ {\begin{array}{c} {0}\\ {\left ({{f_{2}({x_{1}},{x_{2}}) - {f_{2}}({x_{1}},{\hat x_{2}})} }\right)}\\ \vdots \\ {\left ({{{f_{n - 1}}({x_{1}}, \cdots,{x_{n - 1}}) - {f_{n - 1}}({x_{1}}, \cdots,{\hat x_{n - 1}})} }\right)}\\ 0 \end{array}} }\right], \\ {\delta _{f/\varepsilon }}=&\left [{ {\begin{array}{c} {\dfrac {1}{{{\varepsilon ^{n - 2}}}}\left ({{f_{2}({x_{1}},{x_{2}}) - {f_{2}}({x_{1}},{\hat x_{2}})} }\right)}\\ {\dfrac {1}{{{\varepsilon ^{n - 3}}}}\left ({{f_{3}({x_{1}},{x_{2}},{x_{3}}) - {f_{3}}({x_{1}},{\hat x_{2}},{\hat x_{3}})} }\right)}\\ \vdots \\ {\left ({{f_{n}(x, s + u_{r}) - {f_{n}}({\hat x}, s + u_{r})} }\right)}\\ 0 \end{array}} }\right], \\ {\psi _{1}}=&- \frac {{\partial {\sigma _{f_{n}}}}}{\partial u}K{F_{cs}} + \mu \left \{{ {\frac {{\partial {\sigma _{f_{n}}}}}{\partial x}\left [{ {Ax + f(x,z,s + {u_{r}})} }\right]} }\right \} \\&+ \,\mu \left \{{ {\frac {{\partial {\sigma _{f_{n}}}}}{\partial z}{f_{0}}(x,z) + \frac {{\partial {\sigma _{f_{n}}}}}{\partial w}\dot w} }\right \}, \\ {F_{cs}}=&{f_{n}}({\hat x_{s}},s + {u_{r}}) + {\hat \sigma _{f_{n}s}} - {f_{rn}}(t) + L\hat e.\end{align*}
According to Assumption 4 and (9), we have:\begin{align*} \left \|{ {\delta _{f}} }\right \|\le&{\varepsilon ^{2}}\sum \limits _{j = 2}^{n - 1} {j{k_{j}}} \left \|{ \eta }\right \|, \\ \left \|{ {{\delta _{f/\varepsilon }}} }\right \|\le&\varepsilon \sum \limits _{j = 2}^{n} {j{k_{j}}} \left \|{ \eta }\right \|.\tag{11}\end{align*}
We are going to analyze the stability of the boundary layer and reduced systems in the closed-loop system (10). Since the
Firstly, by considering \begin{equation*} \varepsilon \dot \eta = \Lambda \eta,\quad \eta (0) = {\eta _{0}}.\tag{12}\end{equation*}
After the fast variable \begin{equation*} \mu \dot s = - KF(x,z,w,s + {u_{r}},{f_{rn}}(t)),\quad s(0) = {s_{0}},\tag{13}\end{equation*}
\begin{equation*}\mu {\dot V_{s}} = - sKF \le - \beta {s^{2}}.\end{equation*}
\begin{equation*} \dot e = (A - BL)e,\quad e(0) = {e_{0}}.\tag{14}\end{equation*}
Let \begin{equation*}{\Omega _{a}} = \left \{{ {V_{e} \le {a_{1}}} }\right \} \times \left \{{ {V_{z} \le {c_{0}}} }\right \} \times \left \{{ {V_{s} \le {a_{2}}} }\right \},\end{equation*}
\begin{equation*}0 < {a_{1}} < {b_{1}},\quad 0 < {a_{2}} < {b_{2}},\end{equation*}
Theorem 1:
Under Assumptions 1–4, suppose the trajectory
all trajectories of (10) are bounded.
for any given positive number
,a hold uniformly on\begin{equation*}\lim \limits _{\mu,(\varepsilon /\mu) \to 0} \left \|{ {x - \hat x} }\right \| = 0,\quad \lim \limits _{\mu,(\varepsilon /\mu) \to 0} \left |{ {u - {u_{r}}} }\right | = 0,\end{equation*} View Source\begin{equation*}\lim \limits _{\mu,(\varepsilon /\mu) \to 0} \left \|{ {x - \hat x} }\right \| = 0,\quad \lim \limits _{\mu,(\varepsilon /\mu) \to 0} \left |{ {u - {u_{r}}} }\right | = 0,\end{equation*}
, and\left [{ {a,\infty } }\right [ \begin{equation*}\lim \limits _{\mu,(\varepsilon /\mu) \to 0,t \to \infty } \left \|{ {x - {r}} }\right \| = 0.\end{equation*} View Source\begin{equation*}\lim \limits _{\mu,(\varepsilon /\mu) \to 0,t \to \infty } \left \|{ {x - {r}} }\right \| = 0.\end{equation*}
Proof:
The proof of Theorem 1 is given in Appendix A.
B. n = 1
Define \begin{equation*}{e_{1}} = {x_{1}} - {r_{1}},\quad \eta = {\sigma _{f_{1}}} - {\hat \sigma _{f_{1}}},\end{equation*}
\begin{align*} {\dot e_{1}}=&- \ell {e_{1}} + \left [{ {\bar f_{1}({x_{1}},z,w,s + {u_{r}}) - {f_{r1}}(t) + \ell {e_{1}}} }\right], \\ \dot z=&{f_{0}}(z,x,w), \\ \mu \dot s=&- K\left [{ {f_{1}({x_{1}},s + {u_{r}}) + {\hat \sigma _{f_{1}s}} - {f_{r1}}(t) + \ell {e_{1}}} }\right] - \mu {\phi _{d}}, \\ \varepsilon \dot \eta=&- {\alpha _{1}}\eta + (\varepsilon /\mu){\psi _{1}},\tag{15}\end{align*}
\begin{align*} {\psi _{1}}=&- \frac {{\partial {\sigma _{f_{1}}}}}{\partial u}K{F_{cs}} + \mu \left \{{ {\frac {{\partial {\sigma _{f_{1}}}}}{{\partial {x_{1}}}}{\bar f_{1}}({x_{1}},z,w,s + {u_{r}})} }\right \} \\&+ \,\mu \left \{{ {\frac {{\partial {\sigma _{f_{1}}}}}{\partial z}{f_{0}}(x,z,w) + \frac {{\partial {\sigma _{f_{1}}}}}{\partial w}\dot w} }\right \}, \\ {F_{cs}}=&{f_{1}}({x_{1}},s + {u_{r}}) + {\hat \sigma _{f_{1}s}} - {f_{r1}}(t) + \ell {e_{1}}.\end{align*}
The closed-loop system (15) can be viewed as a special case of (10) in Subsection IV-A. Therefore, the stability and performance analysis results in Subsection IV-A is also applicable to (15).
Simulation and Experiment
A. Numerical Simulations
In order to verify the effectiveness of the proposed LADRC, consider the modified Van der Pol oscillator [23] \begin{align*} {\dot x_{1}}=&{x_{2}} + {f_{1}}({x_{1}}),\quad {x_{1}}(0) = 0, \\ {\dot x_{2}}=&{f_{2}}(x,u) + {\sigma _{f_{2}}}(x,z,w,u),\quad {x_{2}}(0) = 0, \\ \dot z=&{f_{0}}(z,x),\quad z(0) = 0.5, \\ y=&{x_{1}} + n(t),\tag{16}\end{align*}
\begin{align*}&\hspace{-0.5pc}{\sigma _{f_{2}}}(x,z,w,u) = (1 - x_{1}^{2}){x_{2}} + \tanh ({x_{1}} + z + u + 3) \\&\qquad \qquad \qquad \qquad \qquad \quad \qquad \qquad \,\,+\, \tanh (u - 3) + w,\end{align*}
The target system of (16) is \begin{align*} {\dot r_{1}}=&{r_{2}} + {f_{1}}({x_{1}}),\quad {r_{1}}(0) = 0.1, \\[3pt] {\dot r_{2}}=&{f_{r2}}(t),\quad {r_{2}}(0) = 0,\tag{17}\end{align*}
\begin{align*} {f_{r2}}(t)=&- 25{r_{1}} - 10{r_{2}} + {u_{r}}(t), \\[3pt] {u_{r}}(t)=&{e^{ - 0.2t}}\sin (t + 2) + {e^{ - 0.2t}}\cos (2t + 10) \\[3pt]&+\, {e^{ - 0.2t}}\sin (3t + 5).\end{align*}
To make the system (16) follow the target system (17), the proposed LADRC can be designed as \begin{align*} {\dot z_{2}}=&- \frac {\alpha _{1}}{\varepsilon }\left ({{z_{2} + 0.2\sin ({x_{1}})} }\right) + {z_{3}} - {x_{1}} + 0.01u_{s} \\[3pt]&+\, \left ({{\frac {\alpha _{2}}{\varepsilon ^{2}} - \frac {\alpha _{1}^{2}}{\varepsilon ^{2}}} }\right){x_{1}}, \\ {\hat x_{2}}=&{z_{2}} + \frac {\alpha _{1}}{\varepsilon }{x_{1}},\quad {z_{2}}(0) = - \frac {\alpha _{1}}{\varepsilon }{x_{1}}(0), \\[3pt] {\dot z_{3}}=&- \frac {\alpha _{2}}{\varepsilon ^{2}}\left ({{z_{2} + 0.2\sin ({x_{1}})} }\right) - \frac {{\alpha _{1}{\alpha _{2}}}}{\varepsilon ^{3}}{x_{1}}, \\[3pt] {\hat \sigma _{f_{2}}}=&{z_{3}} + \frac {\alpha _{2}}{\varepsilon ^{2}}{x_{1}},\quad {z_{3}}(0) = - \frac {\alpha _{2}}{\varepsilon ^{2}}{x_{1}}(0), \\[3pt] \mu \dot u=&- K\left [{ { - {x_{1}} + 0.01u_{s} + {\hat \sigma _{f_{2}s}} - {f_{r2}}(t) + L{\hat e_{s}}} }\right], \\&u(0) = 0,\tag{18}\end{align*}
\begin{align*} L{\hat e_{s}}=&{\ell _{1}}({x_{1}} - {r_{1}}) + {\ell _{2}}({\hat x_{2s}} - {r_{2}}), \\ {\hat x_{2s}}=&{M_{2}}sat\left ({{\frac {\hat x_{2}}{M_{2}}} }\right),\quad {\hat \sigma _{f_{2}s}} = {M_\sigma }sat\left ({{\frac {{{\hat \sigma _{f_{2}}}}}{M_\sigma }} }\right), \\ u_{s}=&{M_{u}}sat\left ({\frac {u}{M_{u}}}\right).\end{align*}
The parameters of the proposed LADRC in (18) are given in Table 1.
The indirect dynamic inversion in [23] is introduced to be compared with the proposed LADRC in (18) and can be designed as \begin{align*} {{\dot {\hat x}}_{1}}=&{\hat x_{2}} + 0.2\sin ({\hat x_{1}}) + \frac {\alpha _{1}}{\varepsilon }({x_{1}} - {\hat x_{1}}),\quad {\hat x_{1}}(0) = 0, \\ {{\dot {\hat x}}_{2}}=&{\hat \sigma _{f_{2}}}(t) + \frac {\alpha _{2}}{\varepsilon ^{2}}({x_{1}} - {\hat x_{1}}),\quad {\hat x_{2}}(0) = 0, \\ {{\dot {\hat \sigma } }_{f_{2}}}=&\frac {\alpha _{3}}{\varepsilon ^{3}}({x_{1}} - {\hat x_{1}}),\quad {\hat \sigma _{f_{2}}}(0) = 0, \\ \dot \chi=&- \frac {1}{\mu }K\left [{ { - {f_{r2}}(t) + {\ell _{1}}({\hat x_{1s}} - {r_{1}}) + {\ell _{2}}({\hat x_{2s}} - {r_{2}})} }\right], \\&\chi (0) = 0, \\ u=&\chi - \frac {1}{\mu }K\left ({{\hat x_{2s}(t)} - {x}_{2}(0) }\right),\tag{19}\end{align*}
The nonlinear active disturbance rejection control (NLADRC) in [22] is also introduced to be compared with the proposed LADRC in (18) and can be designed as \begin{align*} {{\dot {\hat x}}_{1}}=&{\hat x_{2}} + 0.2\sin ({\hat x_{1}}) + \frac {\alpha _{1}}{\varepsilon }({x_{1}} - {\hat x_{1}}) + \varepsilon \varphi \left ({{\frac {{x_{1} - {\hat x_{1}}}}{\varepsilon ^{2}}} }\right), \\&{\hat x_{1}}(0) = 0{{,}} \\ {{\dot {\hat x}}_{2}}=&{\hat \sigma _{f_{2}}}(t) + \frac {\alpha _{2}}{\varepsilon ^{2}}({x_{1}} - {\hat x_{1}}),\quad {\hat x_{2}}(0) = 0, \\ {{\dot {\hat \sigma }}_{f_{2}}}=&\frac {\alpha _{3}}{\varepsilon ^{3}}({x_{1}} - {\hat x_{1}}),\quad {\hat \sigma _{f_{2}}}(0) = 0, \\ \mu \dot u=&- K\left [{ { - {\hat x_{1s}} + 0.01{u_{s}} + {\hat \sigma _{f_{2}s}} - {f_{r2}}(t) + L{\hat e_{s}}} }\right], \\&u(0) = 0,\tag{20}\end{align*}
\begin{align*} \varphi (v)=&\begin{cases} { - \dfrac {1}{4},}&{v < - \dfrac {\pi }{2},}\\ {\dfrac {1}{4}\sin (v),}&{ - \dfrac {\pi }{2} \le v \le \dfrac {\pi }{2},}\\ {\dfrac {1}{4},}&{v > \dfrac {\pi }{2},} \end{cases}\\ L{\hat e_{s}}=&{\ell _{1}}({\hat x_{1s}} - {r_{1}}) + {\ell _{2}}({\hat x_{2s}} - {r_{2}}),\\ {\hat x_{1s}}=&{M_{1}}sat\left ({{\frac {\hat x_{1}}{M_{1}}} }\right),\quad {\hat x_{2s}} = {M_{2}}sat\left ({{\frac {\hat x_{2}}{M_{2}}} }\right),\\ {\hat \sigma _{f_{2}s}}=&{M_\sigma }sat\left ({{\frac {{{\hat \sigma _{f_{2}}}}}{M_\sigma }} }\right),\quad {u_{s}} = {M_{u}}sat\left ({{\frac {u}{M_{u}}} }\right),\end{align*}
In the absence of measurement noises, i.e.,
Figs. 1 and 2 show the numerical simulation results of the proposed LADRC, the indirect dynamic inversion, and the NLADRC, respectively. Three performance indices, maximum tracking error \begin{align*} {e_{\max }}=&\max \left \{{ {\left |{ {x_{1}(t) - {r_{1}}(t)} }\right |} }\right \}, \\ {{RMSE}}=&\sqrt {\frac {1}{t}\int _{0}^{t} {{{\left ({{x_{1}(\tau) - {r_{1}}(\tau)} }\right)}^{2}}d\tau } },\\ E=&\int _{0}^{t} {\left |{ {u(\tau)} }\right |d\tau },\end{align*}
B. Experiments
To show the practical effectiveness of the proposed LADRC, we perform experiments in the linear motor servo system shown in Fig. 3. The linear motor servo system with nonaffine input and uncertainties can be expressed as \begin{align*} {\dot x_{1}}=&{x_{2}}, \\ {\dot x_{2}}=&{\sigma _{f_{2}}}(x,w,u), \\ y=&{x_{1}},\tag{21}\end{align*}
\begin{equation*}{\sigma _{f_{2}}}(x,w,u) = bu + \arctan (u) + d(x),\end{equation*}
The target system of (21) is \begin{align*} {\dot r_{1}}=&{r_{2}},\quad {r_{1}}(0) = {l_{0}}, \\ {\dot r_{2}}=&{f_{r2}}(t),\quad {r_{2}}(0) = {v_{0}},\tag{22}\end{align*}
The proposed LADRC for (21) can be designed as \begin{align*} {\dot z_{2}}=&- \frac {\alpha _{1}}{\varepsilon }{z_{2}} + {z_{3}} + \left ({{\frac {\alpha _{2}}{\varepsilon ^{2}} - \frac {\alpha _{1}^{2}}{\varepsilon ^{2}}} }\right){x_{1}}, \\ {\hat x_{2}}=&{z_{2}} + \frac {\alpha _{1}}{\varepsilon }{x_{1}},\quad {z_{2}}(0) = - \frac {\alpha _{1}}{\varepsilon }{x_{1}}(0), \\ {\dot z_{3}}=&- \frac {\alpha _{2}}{\varepsilon ^{2}}{z_{2}} - \frac {{\alpha _{1}{\alpha _{2}}}}{\varepsilon ^{3}}{x_{1}}, \\ {\hat \sigma _{f_{2}}}=&{z_{3}} + \frac {\alpha _{2}}{\varepsilon ^{2}}{x_{1}},\quad {z_{3}}(0) = - \frac {\alpha _{2}}{\varepsilon ^{2}}{x_{1}}(0), \\ \mu \dot u=&- K\left [{ {{\hat \sigma _{f_{2}s}} - {f_{r2}}(t) + {\ell _{1}}({x_{1}} - {r_{1}}) + {\ell _{2}}({\hat x_{2s}} - {r_{2}})} }\right], \\&u(0) = 0,\tag{23}\end{align*}
\begin{align*} {\hat x_{2s}}=&{M_{2}}sat\left ({{\frac {\hat x_{2}}{M_{2}}} }\right),\quad {\hat \sigma _{f_{2}s}} = {M_\sigma }sat\left ({{\frac {{{\hat \sigma _{f_{2}}}}}{M_\sigma }} }\right), \\ {u_{s}}=&{M_{u}}sat\left ({{\frac {u}{M_{u}}} }\right).\end{align*}
The indirect dynamic inversion in [23] for (21) can be expressed as \begin{align*} {{\dot {\hat x}}_{1}}=&{\hat x_{2}} + \frac {\alpha _{1}}{\varepsilon }({x_{1}} - {\hat x_{1}}),\quad {\hat x_{1}}(0) = 0, \\ {{\dot {\hat x}}_{2}}=&{\hat \sigma _{f_{2}}}(t) + \frac {\alpha _{2}}{\varepsilon ^{2}}({x_{1}} - {\hat x_{1}}),\quad {\hat x_{2}}(0) = 0, \\ {{\dot {\hat \sigma } }_{f_{2}}}=&\frac {\alpha _{3}}{\varepsilon ^{3}}({x_{1}} - {\hat x_{1}}),\quad {\hat \sigma _{f_{2}}}(0) = 0, \\ \dot \chi=&- \frac {1}{\mu }K\left [{ { - {f_{r2}}(t) + {\ell _{1}}({\hat x_{1s}} - {r_{1}}) + {\ell _{2}}({\hat x_{2s}} - {r_{2}})} }\right], \\&\chi (0) = 0, \\ u=&\chi - \frac {1}{\mu }K\left ({{{\hat x_{2s}}(t) - {x_{2}}(0)} }\right),\tag{24}\end{align*}
In addition, the conventional PID controller is introduced and can be expressed as \begin{equation*} u = {k_{p}}{e_{1}} + {k_{d}}{\dot e_{1}} + {k_{i}}\int _{0}^{t} {e_{1}(\tau)d\tau },\tag{25}\end{equation*}
\begin{equation*} {{DF}}(s) = \frac {\omega _{c}^{2}s}{{s^{2} + 2\zeta {\omega _{c}}s + \omega _{c}^{2}}},\end{equation*}
In order to compare these three approaches fairly, their parameters are tuned to produce similar tracking performance without the nonaffine term as shown in Fig. 4. The designed control parameters of the LADRC in (23) are chosen in Table 4, and the parameters of the indirect dynamic inversion in (24) are given in Table 5. The parameters of the PID in (25) are selected in Table 6.
Fig. 5 shows experimental results of the proposed LADRC, the indirect dynamic inversion, and the PID, respectively. Three performance indices, maximum tracking error
Conclusion
In this paper, we propose a LADRC design method for the output feedback control of a class of uncertain, nonaffine, strict-feedback nonlinear systems. A RLESO is designed to estimate the unmeasured states and uncertainties, and dynamic inversion is used to deal with the nonaffine inputs with sector conditions for the inputs. The singular perturbation method is used to analyze the stability and performance of the closed-loop system, and the comparison simulation and experimental results with the existing methods demonstrates the effectivpeness of the proposed LADRC.
Although the considered system in this paper is nonaffine, for affine nonlinear systems, the proposed LADRC provides an extra ADRC design method when the choice of nominal value of control gain is difficult in the classical ADRC framework.
AppendixProof of Theorem 1
Proof of Theorem 1
The main steps of the proof are outlined in three steps:
Firstly, all trajectories
starting from(e,z,s,\eta) , i.e.,{\Omega _{a}} \times {Q_\eta } , will enter the set({e_{0}},{z_{0}},{s_{0}},{\eta _{0}}) \in {\Omega _{a}} \times {Q_\eta } in finite time.{\Omega _{b}} \times \left \{{ {V_\eta \le {l_{7}}{(\varepsilon /\mu)^{2}}} }\right \} Secondly, all trajectories
starting from(e,z,s,\eta) will enter the set{\Omega _{b}} \times \left \{{ {V_\eta \le {l_{7}}{(\varepsilon /\mu)^{2}}} }\right \} in finite time.\left \{{ {V_{e} \le {b_{1}}} }\right \} \times \left \{{ {V_{z} \le {c_{0}}} }\right \} \times \left \{{ {V_{s} \le {l_{14}}{\lambda ^{2}}} }\right \} \times \left \{{ {V_\eta \le {l_{7}}{(\varepsilon /\mu)^{2}}} }\right \} Lastly, all trajectories
starting from(e,z,s,\eta) will enter the set\left \{{ {V_{e} \le {b_{1}}} }\right \} \times \left \{{ {V_{z} \le {c_{0}}} }\right \} \times \left \{{ {V_{s} \le {l_{14}}{\lambda ^{2}}} }\right \} \times \left \{{ {V_\eta \le {l_{7}}{(\varepsilon /\mu)^{2}}} }\right \} .\left \{{ {V_{e} \le {l_{17}}{\lambda ^{2}}} }\right \} \times \left \{{ {V_{z} \le {c_{0}}} }\right \} \times \left \{{ {V_{s} \le {l_{14}}{\lambda ^{2}}} }\right \} \times \left \{{ {V_\eta \le {l_{7}}{(\varepsilon /\mu)^{2}}} }\right \}
In the first step, since \begin{equation*} \left \|{ {{\delta _{f/\varepsilon }} + {B}(\varepsilon /\mu){\psi _{1}}} }\right \| \le \varepsilon {l_{1}}\left \|{ \eta }\right \| + \frac {\varepsilon }{\mu }{l_{2}},\tag{26}\end{equation*}
Let \begin{equation*}{V_\eta } = {\eta ^{T}}{P_\eta }\eta,\end{equation*}
\begin{align*} \varepsilon {\dot V_\eta }=&- {\left \|{ \eta }\right \|^{2}} + 2{\eta ^{T}}{P_\eta }\left ({{{\delta _{f/\varepsilon }} + {B_{1}}(\varepsilon /\mu){\psi _{1}}} }\right) \\\le&- {\left \|{ \eta }\right \|^{2}} + 2{l_{3}}\left \|{ \eta }\right \|\left ({{\varepsilon {l_{1}}\left \|{ \eta }\right \| + \frac {\varepsilon }{\mu }{l_{2}}} }\right) \\=&- {\left \|{ \eta }\right \|^{2}} + \varepsilon {l_{4}}{\left \|{ \eta }\right \|^{2}} + \frac {\varepsilon }{\mu }{l_{5}}\left \|{ \eta }\right \|,\tag{27}\end{align*}
When \begin{equation*}\varepsilon {\dot V_\eta } \le - \frac {1}{2}{\left \|{ \eta }\right \|^{2}} + \frac {\varepsilon }{\mu }{l_{5}}\left \|{ \eta }\right \|,\end{equation*}
\begin{equation*} \varepsilon {\dot V_\eta } \le - {l_{6}}{V_\eta },\quad for~{V_\eta } \ge {\left ({{\frac {\varepsilon }{\mu }} }\right)^{2}}{l_{7}},\tag{28}\end{equation*}
\begin{equation*}{l_{6}} < \frac {1}{{2{l_{3}}}},\quad {l_{7}} = {\left ({{\frac {{2\sqrt {l_{3}} {l_{5}}}}{{1 - 2{l_{6}}{l_{3}}}}} }\right)^{2}}.\end{equation*}
Taking into consideration that there is
if
, then\eta (0) \in \left \{{ {V_\eta \le {{\left ({{\frac {\varepsilon }{\mu }} }\right)}^{2}}{l_{7}}} }\right \} \begin{equation*}\eta (t) \in \left \{{ {V_\eta \le {{\left ({{\frac {\varepsilon }{\mu }} }\right)}^{2}}{l_{7}}} }\right \},\quad t \in \left [{ {0,\infty } }\right [,\end{equation*} View Source\begin{equation*}\eta (t) \in \left \{{ {V_\eta \le {{\left ({{\frac {\varepsilon }{\mu }} }\right)}^{2}}{l_{7}}} }\right \},\quad t \in \left [{ {0,\infty } }\right [,\end{equation*}
if
, then according to (28), we have:\eta (0) \notin \left \{{ {V_\eta \le {{\left ({{\frac {\varepsilon }{\mu }} }\right)}^{2}}{l_{7}}} }\right \} where\begin{equation*} {V_\eta }(t) \le {V_\eta }(0){e^{ - \frac {l_{6}}{\varepsilon }t}} \le \frac {l_{9}}{{{\varepsilon ^{2n}}}}{e^{ - \frac {l_{6}}{\varepsilon }t}},\tag{29}\end{equation*} View Source\begin{equation*} {V_\eta }(t) \le {V_\eta }(0){e^{ - \frac {l_{6}}{\varepsilon }t}} \le \frac {l_{9}}{{{\varepsilon ^{2n}}}}{e^{ - \frac {l_{6}}{\varepsilon }t}},\tag{29}\end{equation*}
.{l_{9}} = {l_{3}}l_{8}^{2}
To estimate the time \begin{equation*}\frac {l_{9}}{{{\varepsilon ^{2n}}}}{e^{ - \frac {l_{6}}{\varepsilon }{T_{1}}}} = {\left ({{\frac {\varepsilon }{\mu }} }\right)^{2}}{l_{7}} \Leftrightarrow {T_{1}} = \frac {\varepsilon }{l_{6}}\ln \left ({{\frac {{l_{9}{\mu ^{2}}}}{{l_{7}{\varepsilon ^{2(n + 1)}}}}} }\right).\end{equation*}
\begin{align*} \lim \limits _{\varepsilon \to 0} {T_{1}}(\varepsilon)=&\lim \limits _{\varepsilon \to 0} \frac {\varepsilon }{l_{6}}\ln \left ({{\frac {{l_{9}{\mu ^{2}}}}{{l_{7}{\varepsilon ^{2(n + 1)}}}}} }\right) \\\le&\frac {{\ln ({l_{9}}/{l_{7}})}}{l_{6}}\lim \limits _{\varepsilon \to 0} \varepsilon - \frac {2(n + 1)}{l_{6}}\lim \limits _{\varepsilon \to 0} \varepsilon \ln \varepsilon \\=&0.\tag{30}\end{align*}
To summarize, we have \begin{equation*} {T_{1}}(\varepsilon) = \begin{cases} {0,}&{\eta (0)\; \in \left \{{ {V_\eta \le {{\left ({{\dfrac {\varepsilon }{\mu }} }\right)}^{2}}{l_{7}}} }\right \},}\\ {0,}&{\varepsilon \to 0,\eta (0)\; \notin \left \{{ {V_\eta \le {{\left ({{\dfrac {\varepsilon }{\mu }} }\right)}^{2}}{l_{7}}} }\right \}.} \end{cases}\end{equation*}
Because
In the second step, the \begin{equation*} {l_{10}}\left \|{ \eta }\right \| + {l_{11}}\mu \le {l_{12}}\lambda,\tag{31}\end{equation*}
\begin{equation*}{l_{12}} = {l_{10}}\sqrt {\frac {l_{7}}{{{\lambda _{\min }}({P_\eta })}}} + {l_{11}},\quad \lambda = \max \left \{{ {\mu,\frac {\varepsilon }{\mu }} }\right \}.\end{equation*}
Based on (31), we have \begin{align*}&\hspace {-1pc} \mu {\dot V_{s}} = - s(KF - \mu {\phi _{d}}) \le - \beta {s^{2}} + \lambda {l_{12}}s \le - {l_{13}}{V_{s}}, \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad for\;{V_{s}} \ge {l_{14}}{\lambda ^{2}}.\tag{32}\end{align*}
\begin{equation*}{l_{13}} \in \left]{ {0,2\beta } }\right [,{l_{14}} = \frac {1}{2}{\left ({{\frac {{{l_{12}}}}{{\beta - {l_{13}}/2}}} }\right)^{2}}.\end{equation*}
Next we estimate the time
If
, thens(0)\; \in \;\left \{{ {V_{s} \le {l_{14}}{\lambda ^{2}}} }\right \} \begin{equation*}s(t)\; \in \;\left \{{ {V_{s} \le {l_{14}}{\lambda ^{2}}} }\right \},\quad t \in \left [{ {T_{1}(\varepsilon),\infty } }\right [.\end{equation*} View Source\begin{equation*}s(t)\; \in \;\left \{{ {V_{s} \le {l_{14}}{\lambda ^{2}}} }\right \},\quad t \in \left [{ {T_{1}(\varepsilon),\infty } }\right [.\end{equation*}
If
, based on (32), we haves(0)\; \notin \;\left \{{ {V_{s} \le {l_{14}}{\lambda ^{2}}} }\right \} \begin{equation*}{V_{s}}(t) \le {V_{s}}(0){e^{ - \frac {{{l_{13}}}}{\mu }t}}.\end{equation*} View Source\begin{equation*}{V_{s}}(t) \le {V_{s}}(0){e^{ - \frac {{{l_{13}}}}{\mu }t}}.\end{equation*}
If
, let\lambda = \mu \ge \frac {\varepsilon }{\mu } , then{V_{s}} = {l_{14}}{\mu ^{2}} by L’hopital’s rule, it can be shown\begin{align*} \displaystyle {V_{s}}(0){e^{ - \frac {{{l_{13}}}}{\mu }{T_{2}}}}=&{\mu ^{2}}{l_{14}} \Leftrightarrow \\ \displaystyle \quad {T_{2}}(\mu)=&\frac {\mu }{{{l_{13}}}}\ln \left ({{\frac {V_{s}(0)}{{{l_{14}}{\mu ^{2}}}}} }\right),\end{align*} View Source\begin{align*} \displaystyle {V_{s}}(0){e^{ - \frac {{{l_{13}}}}{\mu }{T_{2}}}}=&{\mu ^{2}}{l_{14}} \Leftrightarrow \\ \displaystyle \quad {T_{2}}(\mu)=&\frac {\mu }{{{l_{13}}}}\ln \left ({{\frac {V_{s}(0)}{{{l_{14}}{\mu ^{2}}}}} }\right),\end{align*}
\begin{equation*}\lim \limits _{\mu \to 0} {T_{2}}(\mu) = \lim \limits _{\mu \to 0} \frac {\mu }{{{l_{13}}}}\ln \left ({{\frac {V_{s}(0)}{{{l_{14}}{\mu ^{2}}}}} }\right) = 0.\end{equation*} View Source\begin{equation*}\lim \limits _{\mu \to 0} {T_{2}}(\mu) = \lim \limits _{\mu \to 0} \frac {\mu }{{{l_{13}}}}\ln \left ({{\frac {V_{s}(0)}{{{l_{14}}{\mu ^{2}}}}} }\right) = 0.\end{equation*}
If
, let\lambda = \frac {\varepsilon }{\mu } \ge \mu , then{V_{s}} = {l_{14}}{\left ({{\frac {\varepsilon }{\mu }} }\right)^{2}} by L’hopital’s rule,\begin{align*} {V_{s}}(0){e^{ - \frac {{{l_{13}}}}{\mu }{T_{2}}}}=&{l_{14}}{\left ({{\frac {\varepsilon }{\mu }} }\right)^{2}} \Leftrightarrow \\ {T_{2}}(\mu)=&\frac {\mu }{{{l_{13}}}}\ln \left ({{\frac {{V_{s}(0){\mu ^{2}}}}{{{l_{14}}{\varepsilon ^{2}}}}} }\right),\end{align*} View Source\begin{align*} {V_{s}}(0){e^{ - \frac {{{l_{13}}}}{\mu }{T_{2}}}}=&{l_{14}}{\left ({{\frac {\varepsilon }{\mu }} }\right)^{2}} \Leftrightarrow \\ {T_{2}}(\mu)=&\frac {\mu }{{{l_{13}}}}\ln \left ({{\frac {{V_{s}(0){\mu ^{2}}}}{{{l_{14}}{\varepsilon ^{2}}}}} }\right),\end{align*}
\begin{align*} \lim \limits _{\mu \to 0} {T_{2}}(\mu)=&\lim \limits _{\mu \to 0} \frac {\mu }{{{l_{13}}}}\ln \left ({{\frac {{V_{s}(0){\mu ^{2}}}}{{{l_{14}}{\varepsilon ^{2}}}}} }\right) \\\le&\lim \limits _{\mu \to 0} \frac {\mu }{{{l_{13}}}}\ln \left ({{\frac {V_{s}(0)}{{{l_{14}}{\mu ^{2}}}}} }\right) = 0.\end{align*} View Source\begin{align*} \lim \limits _{\mu \to 0} {T_{2}}(\mu)=&\lim \limits _{\mu \to 0} \frac {\mu }{{{l_{13}}}}\ln \left ({{\frac {{V_{s}(0){\mu ^{2}}}}{{{l_{14}}{\varepsilon ^{2}}}}} }\right) \\\le&\lim \limits _{\mu \to 0} \frac {\mu }{{{l_{13}}}}\ln \left ({{\frac {V_{s}(0)}{{{l_{14}}{\mu ^{2}}}}} }\right) = 0.\end{align*}
To summarize, we have \begin{equation*}{T_{2}}(\mu) = \begin{cases} {0,}&{s(0)\; \in \;\left \{{ {V_{s} \le {l_{14}}{\lambda ^{2}}} }\right \},}\\ {0,}&{\mu \to 0,s(0)\; \notin \;\left \{{ {V_{s} \le {l_{14}}{\lambda ^{2}}} }\right \}.} \end{cases}\end{equation*}
By choosing
Lastly, the \begin{align*}&\hspace{-0.8pc}\eta (t)\; \in \left \{{ {V_\eta \le {{\left ({{\frac {\varepsilon }{\mu }} }\right)}^{2}}{l_{7}}} }\right \},\quad s(t)\; \in \;\left \{{ {V_{s} \le {l_{14}}{\lambda ^{2}}} }\right \}, \\&\qquad \qquad \qquad \qquad \qquad \qquad \quad ~~ t \in \left [{ {T_{1}(\varepsilon) + {T_{2}}(\mu),\infty } }\right [\end{align*}
\begin{equation*}{\varepsilon ^{2}}\sum \limits _{j = 1}^{n - 1} {j k_{j}} \left \|{ \eta }\right \| + {k_{u}}\left |{ s }\right | < \lambda {l_{15}},\end{equation*}
\begin{equation*}{l_{15}} = \left ({{\sum \limits _{j = 1}^{n - 1} {j k_{j}} \sqrt {\frac {l_{7}}{{{\lambda _{\min }}({P_\eta })}}} + {k_{u}}\sqrt {2{l_{14}}} } }\right).\end{equation*}
The derivative of \begin{align*}&\hspace{-1.2pc} {\dot V_{e}} \le - {\left \|{ e }\right \|^{2}} + 2{\lambda _{\max }}({P_{e}})\lambda {l_{15}}\left \|{ e }\right \| \le - {l_{16}}{V_{e}}, \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad for\;{V_{e}} \ge {l_{17}}{\lambda ^{2}},\tag{33}\end{align*}
\begin{equation*}{l_{16}} \in \left]{ {0,\frac {1}{{{\lambda _{\max }}({P_{e}})}}} }\right [,{l_{17}} = \frac {{4\lambda _{\max }^{3}({P_{e}})l_{15}^{2}}}{{{{(1 - {l_{16}}{\lambda _{\max }}({P_{e}}))}^{2}}}}.\end{equation*}
Next we estimate the time
If
, thene(0) \in \left \{{ {V_{e} \le {l_{17}}{\lambda ^{2}}} }\right \} \begin{equation*}e(t) \in \left \{{ {V_{e} \le {l_{17}}{\lambda ^{2}}} }\right \},\quad t \in \left [{ {T_{1}(\varepsilon) + {T_{2}}(\mu),\infty } }\right [.\end{equation*} View Source\begin{equation*}e(t) \in \left \{{ {V_{e} \le {l_{17}}{\lambda ^{2}}} }\right \},\quad t \in \left [{ {T_{1}(\varepsilon) + {T_{2}}(\mu),\infty } }\right [.\end{equation*}
If
, based on (33), we havee(0) \notin \left \{{ {V_{e} \le {l_{17}}{\lambda ^{2}}} }\right \} Let\begin{equation*}{V_{e}}(t) \le {V_{e}}(0){e^{ - {l_{16}}t}}.\end{equation*} View Source\begin{equation*}{V_{e}}(t) \le {V_{e}}(0){e^{ - {l_{16}}t}}.\end{equation*}
, we obtain{V_{e}} = {l_{17}}{\lambda ^{2}} \begin{equation*}{V_{e}}(0){e^{ - {l_{16}}{T_{3}}}} = {l_{17}}{\lambda ^{2}} \Leftrightarrow {T_{3}}(\lambda) = \frac {1}{{{l_{16}}}}\ln \left ({{\frac {V_{e}(0)}{{{l_{17}}{\lambda ^{2}}}}} }\right).\end{equation*} View Source\begin{equation*}{V_{e}}(0){e^{ - {l_{16}}{T_{3}}}} = {l_{17}}{\lambda ^{2}} \Leftrightarrow {T_{3}}(\lambda) = \frac {1}{{{l_{16}}}}\ln \left ({{\frac {V_{e}(0)}{{{l_{17}}{\lambda ^{2}}}}} }\right).\end{equation*}
To summarize, we have \begin{equation*}{T_{3}}(\lambda) = \begin{cases} {0,}&{e(0) \in \left \{{ {V_{e} \le {l_{17}}{\lambda ^{2}}} }\right \},}\\ {\infty,}&{\lambda \to 0,e(0) \notin \left \{{ {V_{e} \le {l_{17}}{\lambda ^{2}}} }\right \},} \end{cases}\end{equation*}
Therefore,