Loading [a11y]/accessibility-menu.js
Pedestrian Flow Optimization to Reduce the Risk of Crowd Disasters Through Human–Robot Interaction | IEEE Journals & Magazine | IEEE Xplore
Scheduled Maintenance: On Monday, 30 June, IEEE Xplore will undergo scheduled maintenance from 1:00-2:00 PM ET (1800-1900 UTC).
On Tuesday, 1 July, IEEE Xplore will undergo scheduled maintenance from 1:00-5:00 PM ET (1800-2200 UTC).
During these times, there may be intermittent impact on performance. We apologize for any inconvenience.

Pedestrian Flow Optimization to Reduce the Risk of Crowd Disasters Through Human–Robot Interaction


Abstract:

Pedestrian flow in densely populated or congested areas usually presents irregular or turbulent motion state due to competitive behaviors of individual pedestrians, which...Show More

Abstract:

Pedestrian flow in densely populated or congested areas usually presents irregular or turbulent motion state due to competitive behaviors of individual pedestrians, which reduces flow efficiency and raises the risk of crowd accidents. Effective pedestrian flow regulation strategies are highly valuable for flow optimization. Existing studies seek for optimal design of indoor architectural features and spatial placement of pedestrian facilities for the purpose of flow optimization. However, once placed, the stationary facilities are not adaptive to real-time flow changes. In this paper, we investigate the problem of regulating two merging pedestrian flows in a bottleneck area using a mobile robot moving among the pedestrian flows. The pedestrian flows are regulated through dynamic human-robot interaction (HRI) during their collective motion. We adopt an adaptive dynamic programming (ADP) method to learn the optimal motion parameters of the robot in real time, and the resulting outflow through the bottleneck is maximized with the crowd pressure reduced to avoid potential crowd disasters. The proposed algorithm is a data-driven approach that only uses camera observation of pedestrian flows without explicit models of pedestrian dynamics and HRI. Extensive simulation studies are performed in both MATLAB and a robotic simulator to verify the proposed approach and evaluate the performances.
Page(s): 298 - 311
Date of Publication: 19 August 2019
Electronic ISSN: 2471-285X

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.