Loading [MathJax]/extensions/MathMenu.js
Utilizing Clustering to Optimize Resource Demand Estimation Approaches | IEEE Conference Publication | IEEE Xplore

Utilizing Clustering to Optimize Resource Demand Estimation Approaches


Abstract:

Resource demands are crucial parameters for modeling and predicting the performance of software systems. Direct measurement of these resource demands is usually infeasibl...Show More

Abstract:

Resource demands are crucial parameters for modeling and predicting the performance of software systems. Direct measurement of these resource demands is usually infeasible due to instrumentation overheads causing measurement interferences and perturbation in production environments. Thus, a number of statistical estimation approaches (e.g., based on optimization, regression or Kalman filters) have been proposed in the literature. Most of these approaches are parameterized. These parameters influence the estimation quality and the required computation time. Existing work uses historical data as training sets to optimize those parameters and to minimize the estimation error of those approaches. However, if the data traces are fundamentally different, the optimal parameter settings are different as well. In this paper, we propose to use automated clustering in order to group training sets into groups of similar optimization behavior. This way, optimization can be specifically tailored to certain groups of traces in a self-aware manner. During run-time, every trace is first sorted into a cluster, where the respective cluster-wide parameter optimum can be applied. A preliminary case study shows that clustering can provide promising improvements.
Date of Conference: 16-20 June 2019
Date Added to IEEE Xplore: 08 August 2019
ISBN Information:
Conference Location: Umea, Sweden

Contact IEEE to Subscribe

References

References is not available for this document.