Loading [MathJax]/extensions/MathMenu.js
Autonomous Underwater Vehicle Homing With a Single Range-Only Beacon | IEEE Journals & Magazine | IEEE Xplore
Scheduled Maintenance: On Tuesday, 8 April, IEEE Xplore will undergo scheduled maintenance from 1:00-5:00 PM ET (1800-2200 UTC). During this time, there may be intermittent impact on performance. We apologize for any inconvenience.

Autonomous Underwater Vehicle Homing With a Single Range-Only Beacon


Abstract:

Homing behavior for autonomous underwater vehicles (AUVs) is vital for autonomous docking and indispensable for recovery of vehicles in logistically difficult or hazardou...Show More

Abstract:

Homing behavior for autonomous underwater vehicles (AUVs) is vital for autonomous docking and indispensable for recovery of vehicles in logistically difficult or hazardous conditions. Homing to a single acoustic beacon is a low-logistics solution to this engineering challenge. A homing application has been developed in C++ that applies a multilateration-based localization algorithm to estimate transponder location for homing. Mission oriented operating suite interval programming (MOOS-IvP) was implemented as a backseat driver on a Teledyne Gavia AUV to enhance the AUV with adaptive maneuvering capabilities; thus, enabling mission waypoints to be dynamically updated by the homing application (pHomeToBeacon) through the MOOS database and a developed iGavia crewmember. To demonstrate MOOS-IvP-GAVIA and homing capabilities using this first-principles approach to localization, field trials were undertaken in Kópavogur, Iceland, in June 2015 and proved consistent homing to a single beacon within 15 m accuracy. These trials were an industry-first of deploying a user-developed application on MOOS-IvP-GAVIA and of having a Gavia enhanced with adaptive maneuvering capabilities for homing. This new capability enables Gavia AUV to be used as a platform for future developer-led autonomy and applications. Ultimately, pHomeToBeacon will enable any AUV enhanced with MOOS-IvP to use acoustics to home to a surface vessel (stationary or underway) in preparation for autonomous subsea docking and recovery.
Published in: IEEE Journal of Oceanic Engineering ( Volume: 45, Issue: 2, April 2020)
Page(s): 395 - 403
Date of Publication: 13 December 2018

ISSN Information:

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.