Abstract:
Deep brain stimulation is an established surgical treatment for several neurological and movement disorders, such as Parkinson's disease, in which electrostimulation is a...Show MoreMetadata
Abstract:
Deep brain stimulation is an established surgical treatment for several neurological and movement disorders, such as Parkinson's disease, in which electrostimulation is applied to targeted deep nuclei in the basal ganglia through implanted electrode leads. Recent technological improvements in the field have focused on the theoretical advantage of current steering and adaptive (closed-loop) deep brain stimulation. Current steering between several active electrodes would allow for improved accuracy when targeting the desired brain structures. This has the additional benefit of avoiding undesired stimulation of neural tracts that are related to side effects, e.g., internal capsule fibres of passage in subthalamic nucleus deep brain stimulation. Closed-loop deep brain stimulation is based on the premise of continuous recording of a proxy for pathological neural activity (such as beta-band power of measured local field potentials in patients with Parkinson's disease) and accordingly adapting the used stimulus parameters. In this study, we investigate the suitability of an existing highresolution neurorecording probe for high-precision neurostimulation. If a subset of the probe's recording electrodes can be used for stimulation, then the probe would be a suitable candidate for closed-loop deep brain stimulation. A finiteelement model is used to calculate the electric potential, induced by current injection through the high-resolution probe, for different sets of active electrodes. Volumes of activated tissue are calculated and a comparison is made between the highresolution probe and a conventional stimulation lead. We investigate the capability of the probe to shift the volume of activated tissue by steering currents to different sets of active electrodes. Finally, safety limits for the injected current are used to determine the size of the volume in which neurons can be activated with the relatively small electrodes patches on the highresolution probe.
Published in: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
Date of Conference: 18-21 July 2018
Date Added to IEEE Xplore: 28 October 2018
ISBN Information:
ISSN Information:
PubMed ID: 30440833